Common Core: 4th Grade Math : Number & Operations in Base Ten

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3793 : Ssat Elementary Level Quantitative (Math)

Solve \(\displaystyle 5{\overline{\smash{)}70}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 16\)

\(\displaystyle 14\)

\(\displaystyle 18\)

\(\displaystyle 17\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 70\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 5\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 5\) squares and keep adding \(\displaystyle 5\) on top of the previous \(\displaystyle 5\) until we've used all \(\displaystyle 70\) squares. Our rectangular array is \(\displaystyle 14\) squares high. 

\(\displaystyle 70\div5=14\)

5

Example Question #7 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 6{\overline{\smash{)}84}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 11\)

\(\displaystyle 14\)

\(\displaystyle 12\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 84\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 84\) squares. Our rectangular array is \(\displaystyle 14\) squares high. 

\(\displaystyle 84\div6=14\)

6

Example Question #8 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 6{\overline{\smash{)}42}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 9\)

\(\displaystyle 7\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 42\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 42\) squares. Our rectangular array is \(\displaystyle 7\) squares high. 

\(\displaystyle 42\div6=7\)

42 6

Example Question #1 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 90\div6\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 14\)

\(\displaystyle 16\)

\(\displaystyle 18\)

\(\displaystyle 15\)

\(\displaystyle 17\)

Correct answer:

\(\displaystyle 15\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 90\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 6\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 6\) squares and keep adding \(\displaystyle 6\) on top of the previous \(\displaystyle 6\) until we've used all \(\displaystyle 90\) squares. Our rectangular array is \(\displaystyle 15\) squares high. 

\(\displaystyle 90\div6=15\)

90 6

Example Question #10 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 9{\overline{\smash{)}63}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 6\)

\(\displaystyle 4\)

\(\displaystyle 7\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 63\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 9\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 9\) squares and keep adding \(\displaystyle 9\) on top of the previous \(\displaystyle 9\) until we've used all \(\displaystyle 63\) squares. Our rectangular array is \(\displaystyle 7\) squares high. 

\(\displaystyle 63\div9=7\)

63 9

Example Question #11 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 9{\overline{\smash{)}99}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 12\)

\(\displaystyle 13\)

\(\displaystyle 11\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 11\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 99\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 9\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 9\) squares and keep adding \(\displaystyle 9\) on top of the previous \(\displaystyle 9\) until we've used all \(\displaystyle 99\) squares. Our rectangular array is \(\displaystyle 11\) squares high. 

\(\displaystyle 99\div9=11\)

99 9

Example Question #12 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 9{\overline{\smash{)}117}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 15\)

\(\displaystyle 12\)

\(\displaystyle 13\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 13\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 117\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 9\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 9\) squares and keep adding \(\displaystyle 9\) on top of the previous \(\displaystyle 9\) until we've used all \(\displaystyle 117\) squares. Our rectangular array is \(\displaystyle 13\) squares high. 

\(\displaystyle 117\div9=13\)

117 9

Example Question #221 : Number & Operations In Base Ten

Solve \(\displaystyle 3{\overline{\smash{)}29}}\) by making a rectangular array. 

 

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 9\ R4\)

\(\displaystyle 8\ R2\)

\(\displaystyle 8\)

\(\displaystyle 9\ R2\)

Correct answer:

\(\displaystyle 9\ R2\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 29\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 3\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 3\) squares and keep adding \(\displaystyle 3\) on top of the previous \(\displaystyle 3\) until we've used all \(\displaystyle 29\) squares. Our rectangular array is \(\displaystyle 9\) squares high with \(\displaystyle 2\) squares left over, which is our remainder.

\(\displaystyle 29\div3=9\ R2\)

3

Example Question #14 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 3{\overline{\smash{)}19}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 6\ R1\)

\(\displaystyle 7\ R1\)

\(\displaystyle 7\)

\(\displaystyle 7\ R2\)

Correct answer:

\(\displaystyle 6\ R1\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 19\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 3\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 3\) squares and keep adding \(\displaystyle 3\) on top of the previous \(\displaystyle 3\) until we've used all \(\displaystyle 19\) squares. Our rectangular array is \(\displaystyle 6\) squares high with \(\displaystyle 1\) square left over, which is our remainder. 

\(\displaystyle 19\div3=6\ R1\)

3

Example Question #15 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \(\displaystyle 4{\overline{\smash{)}50}}\) by making a rectangular array. 

Possible Answers:

\(\displaystyle 13\ R3\)

\(\displaystyle 13\ R2\)

\(\displaystyle 13\)

\(\displaystyle 12\ R2\)

\(\displaystyle 12\ R3\)

Correct answer:

\(\displaystyle 12\ R2\)

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \(\displaystyle 50\) squares, and one dimension of the rectangular array is going to have \(\displaystyle 4\) squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \(\displaystyle 4\) squares and keep adding \(\displaystyle 4\) on top of the previous \(\displaystyle 4\) until we've used all \(\displaystyle 50\) squares. Our rectangular array is \(\displaystyle 12\) squares high with \(\displaystyle 2\) sqaures left over, which is our remainder. 

\(\displaystyle 50\div4=12\ R2\)

4

Learning Tools by Varsity Tutors