Common Core: 6th Grade Math : Grade 6

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #33 : How To Find A Ratio

A motorcycle travels \displaystyle 750\textup{ miles} in \displaystyle 10\textup{ hours}. What is the motorcyclist’s speed in miles per hour (mph)?

Possible Answers:

\displaystyle 750\textup{ mph}

\displaystyle 75\textup{ mph}

\displaystyle 60\textup{ mph}

\displaystyle 100\textup{ mph}

\displaystyle 57\textup{ mph}

Correct answer:

\displaystyle 75\textup{ mph}

Explanation:

In order to find the motorcyclist’s speed, we need to create a ratio of the miles travelled in a single hour.

\displaystyle 750\ miles: 10\ hours=\frac{750\ miles}{10\ hours}

Reduce and solve.

\displaystyle 75mph

Example Question #34 : How To Find A Ratio

A motorcycle travels \displaystyle 3828\textup{ miles} in \displaystyle 58\textup{ hours}. What is the motorcyclist’s speed in miles per hour (mph)?

Possible Answers:

\displaystyle 76\textup{ mph}

\displaystyle 55\textup{ mph}

\displaystyle 66\textup{ mph}

\displaystyle 68\textup{ mph}

\displaystyle 72\textup{ mph}

Correct answer:

\displaystyle 66\textup{ mph}

Explanation:

In order to find the motorcyclist’s speed, we need to create a ratio of the miles travelled in a single hour.

\displaystyle 3828\ miles: 58\ hours=\frac{3828\ miles}{58\ hours}

Reduce and solve.

\displaystyle 66mph

Example Question #21 : Grade 6

A motorcycle travels \displaystyle 567\textup{ miles} in \displaystyle 9\textup{ hours}. What is the motorcyclist’s speed in miles per hour (mph)?

 

 
Possible Answers:

\displaystyle 36\textup{ mph}

\displaystyle 69\textup{ mph}

\displaystyle 66\textup{ mph}

\displaystyle 63\textup{ mph}

\displaystyle 72\textup{ mph}

Correct answer:

\displaystyle 63\textup{ mph}

Explanation:

In order to find the motorcyclist’s speed, we need to create a ratio of the miles travelled in a single hour.

\displaystyle 567\ miles: 9\ hours=\frac{567\ miles}{9\ hours}

Reduce and solve.

\displaystyle 63mph

Example Question #22 : Grade 6

A motorcycle travels \displaystyle 1296\textup{ miles} in \displaystyle 18\textup{ hours}. What is the motorcyclist’s speed in miles per hour (mph)?

Possible Answers:

\displaystyle 66\textup{ mph}

\displaystyle 75\textup{ mph}

\displaystyle 77\textup{ mph}

\displaystyle 72\textup{ mph}

\displaystyle 80\textup{ mph}

Correct answer:

\displaystyle 72\textup{ mph}

Explanation:

In order to find the motorcyclist’s speed, we need to create a ratio of the miles travelled in a single hour.

\displaystyle 1296\ miles: 18\ hours=\frac{1296\ miles}{18\ hours}

Reduce and solve.

\displaystyle 72mph

Example Question #23 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 25 workers?

Possible Answers:

\displaystyle 12\ \text{managers}

\displaystyle 6\ \text{managers}

\displaystyle 8\ \text{managers}

\displaystyle 10\ \text{managers}

\displaystyle 2\ \text{managers}

Correct answer:

\displaystyle 10\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 25\ \text{workers}.

 

Table

The factory will need \displaystyle 10\ \text{managers}.

 

Example Question #24 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 5 workers?

Possible Answers:

\displaystyle 6\ \text{managers}

\displaystyle 2\ \text{managers}

\displaystyle 4\ \text{managers}

\displaystyle 8\ \text{managers}

\displaystyle 1\ \text{manager}

Correct answer:

\displaystyle 2\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 5\ \text{workers}.

 

Table

The factory will need \displaystyle 2\ \text{managers}.

Example Question #21 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 15 workers?

Possible Answers:

\displaystyle 4\ \text{managers}

\displaystyle 3\ \text{managers}

\displaystyle 8\ \text{managers}

\displaystyle 5\ \text{managers}

\displaystyle 6\ \text{managers}

Correct answer:

\displaystyle 6\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 15\ \text{workers}.

 

Table

The factory will need \displaystyle 6\ \text{managers}.

 

Example Question #22 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 10 workers?

Possible Answers:

\displaystyle 1\ \text{manager}

\displaystyle 4\ \text{managers}

\displaystyle 6\ \text{managers}

\displaystyle 3\ \text{managers}

\displaystyle 2\ \text{managers}

Correct answer:

\displaystyle 4\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 10\ \text{workers}.

 

Table

The factory will need \displaystyle 4\ \text{managers}.

 

Example Question #23 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 60 workers?

Possible Answers:

\displaystyle 23\ \text{managers}

\displaystyle 24\ \text{managers}

\displaystyle 20\ \text{managers}

\displaystyle 18\ \text{managers}

\displaystyle 26\ \text{managers}

Correct answer:

\displaystyle 24\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 60\ \text{workers}.

 

Table

The factory will need \displaystyle 24\ \text{managers}.

 

Example Question #24 : Grade 6

At a local microchip factory, there are \displaystyle 2 managers for every \displaystyle 5 workers. How many managers are needed for \displaystyle 45 workers?

Possible Answers:

\displaystyle 17\ \text{managers}

\displaystyle 18\ \text{managers}

\displaystyle 14\ \text{managers}

\displaystyle 13\ \text{managers}

\displaystyle 16\ \text{managers}

Correct answer:

\displaystyle 18\ \text{managers}

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\displaystyle 2\ \text{workers}: 5\ \text{managers}

If we solve for the table, then we can find the number of managers needed for \displaystyle 45\ \text{workers}.

 

Table

The factory will need \displaystyle 18\ \text{managers}.

 

Learning Tools by Varsity Tutors