Common Core: 6th Grade Math : Identify Equivalent Expressions: CCSS.Math.Content.6.EE.A.4

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 2x?\)

Possible Answers:

\(\displaystyle x+x\)

\(\displaystyle 2x^2\)

\(\displaystyle x^4\)

\(\displaystyle x+x+x+x\)

\(\displaystyle 4x\)

Correct answer:

\(\displaystyle x+x\)

Explanation:

\(\displaystyle 2x\) is equal to \(\displaystyle x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 2(2)=4\) and \(\displaystyle 2+2=4\)

Solve for \(\displaystyle x=5\)

\(\displaystyle 2(5)=10\) and \(\displaystyle 5+5=10\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 2x=x+x\)

Example Question #1 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 3x?\)

Possible Answers:

\(\displaystyle x+x+x\)

\(\displaystyle 6x\)

\(\displaystyle x^3\)

\(\displaystyle 9x\)

\(\displaystyle x+x+x+x\)

Correct answer:

\(\displaystyle x+x+x\)

Explanation:

\(\displaystyle 3x\) is equal to \(\displaystyle x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 3(2)=6\) and \(\displaystyle 2+2+2=6\)

Solve for \(\displaystyle x=4\)

\(\displaystyle 3(4)=12\) and \(\displaystyle 4+4+4=12\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 3x=x+x+x\)

Example Question #3 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 4x?\)

Possible Answers:

\(\displaystyle x+x+x+x\)

\(\displaystyle x+x+x\)

\(\displaystyle 2x\)

\(\displaystyle 5x\)

\(\displaystyle x+x+x+x+x\)

Correct answer:

\(\displaystyle x+x+x+x\)

Explanation:

\(\displaystyle 4x\) is equal to \(\displaystyle x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 4(2)=8\) and \(\displaystyle 2+2+2+2=8\)

Solve for \(\displaystyle x=5\)

\(\displaystyle 4(5)=20\) and \(\displaystyle 5+5+5+5=20\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 4x=x+x+x+x\)

Example Question #1 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 10x?\)

Possible Answers:

\(\displaystyle x^5\)

\(\displaystyle x^2+x^5\)

\(\displaystyle x^{10}\)

\(\displaystyle 9x+1\)

\(\displaystyle x+x+x+x+x+x+x+x+x+x\)

Correct answer:

\(\displaystyle x+x+x+x+x+x+x+x+x+x\)

Explanation:

\(\displaystyle 10x\) is equal to \(\displaystyle x+x+x+x+x+x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 10(2)=20\) and \(\displaystyle 2+2+2+2+2+2+2+2++2+2=20\)

Solve for \(\displaystyle x=3\)

\(\displaystyle 10(3)=30\) and \(\displaystyle 3+3+3+3+3+3+3+3+3+3+=30\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 10x=x+x+x+x+x+x+x+x++x+x\)

Example Question #5 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 12x?\)

Possible Answers:

\(\displaystyle 9x\)

\(\displaystyle 72x\)

\(\displaystyle 6x\)

\(\displaystyle x+x+x+x+x+x+x+x+x+x+x+x\)

\(\displaystyle x^{12}\)

Correct answer:

\(\displaystyle x+x+x+x+x+x+x+x+x+x+x+x\)

Explanation:

\(\displaystyle 12x\) is equal to \(\displaystyle x+x+x+x+x+x+x+x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=4\)

\(\displaystyle 12(4)=48\) and \(\displaystyle 4+4+4+4+4+4+4+4+4+4+4+4=48\)

Solve for \(\displaystyle x=6\)

\(\displaystyle 12(6)=72\) and \(\displaystyle 6+6+6+6+6+6+6+6+6+6+6+6=72\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 12x=x+x+x+x+x+x+x+x+x+x+x+x\)

Example Question #6 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 5x?\)

Possible Answers:

\(\displaystyle x+x+x+x+x\)

\(\displaystyle 10x\)

\(\displaystyle 4x+1\)

\(\displaystyle x^5\)

\(\displaystyle x^2\)

Correct answer:

\(\displaystyle x+x+x+x+x\)

Explanation:

\(\displaystyle 5x\) is equal to \(\displaystyle x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=3\)

\(\displaystyle 5(3)=15\) and \(\displaystyle 3+3+3+3+3=15\)

Solve for \(\displaystyle x=5\)

\(\displaystyle 5(5)=25\) and \(\displaystyle 5+5+5+5+5=25\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 5x=x+x+x+x+x\)

Example Question #7 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 11x?\)

Possible Answers:

\(\displaystyle x+x+x+x+x+x+x+x+x+x+x\)

\(\displaystyle x\)

\(\displaystyle 22x\)

\(\displaystyle 33x\)

\(\displaystyle x^{11}\)

Correct answer:

\(\displaystyle x+x+x+x+x+x+x+x+x+x+x\)

Explanation:

\(\displaystyle 11x\) is equal to \(\displaystyle x+x+x+x+x+x+x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 11(2)=22\) and \(\displaystyle 2+2+2+2+2+2+2+2+2+2+2=22\)

Solve for \(\displaystyle x=3\)

\(\displaystyle 1(3)=33\) and \(\displaystyle 3+3+3+3+3+3+3+3+3+3+3=33\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 11x=x+x+x+x+x+x+x+x+x+x+x\)

Example Question #8 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 6x?\)

Possible Answers:

\(\displaystyle x+x+x+x\)

\(\displaystyle x+x+x+x+x+x\)

\(\displaystyle x^3\)

\(\displaystyle x^6\)

\(\displaystyle 3x^2\)

Correct answer:

\(\displaystyle x+x+x+x+x+x\)

Explanation:

\(\displaystyle 6x\) is equal to \(\displaystyle x+x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 6(2)=12\) and \(\displaystyle 2+2+2+2+2+2=12\)

Solve for \(\displaystyle x=4\)

\(\displaystyle 6(4)=24\) and \(\displaystyle 4+4+4+4+4+4=24\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 6x=x+x+x+x+x+x\)

Example Question #2 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 7x?\)

Possible Answers:

\(\displaystyle x^7\)

\(\displaystyle x+x+x+x\)

\(\displaystyle x+x+x+x+x+x+x\)

\(\displaystyle 4x^3\)

\(\displaystyle 14x\)

Correct answer:

\(\displaystyle x+x+x+x+x+x+x\)

Explanation:

\(\displaystyle 7x\) is equal to \(\displaystyle x+x+x+x+x+x+x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=3\)

\(\displaystyle 7(3)=21\) and \(\displaystyle 3+3+3+3+3+3+3=21\)

Solve for \(\displaystyle x=4\)

\(\displaystyle 7(4)=28\) and \(\displaystyle 4+4+4+4+4+4+4=28\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 7x=x+x+x+x+x+x+x\)

Example Question #10 : Identify Equivalent Expressions: Ccss.Math.Content.6.Ee.A.4

Which expression equals \(\displaystyle 1x?\)

Possible Answers:

\(\displaystyle x-x\)

\(\displaystyle x\)

\(\displaystyle x^2\)

\(\displaystyle x+x\)

\(\displaystyle 10x\)

Correct answer:

\(\displaystyle x\)

Explanation:

\(\displaystyle 1x\) is equal to \(\displaystyle x\) because both expressions will name the same number, no matter which number \(\displaystyle x\) stands for. 

Let's do a couple of samples!

Solve for \(\displaystyle x=2\)

\(\displaystyle 1(2)=2\) and \(\displaystyle 2=2\)

Solve for \(\displaystyle x=5\)

\(\displaystyle 1(5)=5\) and \(\displaystyle 5=5\)

As you can see, both expressions equaled the same value. 

\(\displaystyle 1x=x\)

Learning Tools by Varsity Tutors