All Common Core: 6th Grade Math Resources
Example Questions
Example Question #63 : Numbers And Operations
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #1 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #1 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #2 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #65 : How To Find The Solution To An Equation
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #66 : How To Find The Solution To An Equation
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #67 : How To Find The Solution To An Equation
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #3 : Solve Unit Rate Problems: Ccss.Math.Content.6.Rp.A.3b
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #69 : How To Find The Solution To An Equation
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
Example Question #70 : How To Find The Solution To An Equation
At a local market, farmers trade produce to obtain a more diverse crop. A farmer will trade turnips for
ears of corn. If a man has
ears of corn, then how many turnips can he get?
Ratios can be written in the following format:
Using this format, substitute the given information to create a ratio.
Rewrite the ratio as a fraction.
We know that the farmer has ears of corn. Create a ratio with the variable
that represents how many turnips he can get.
Create a proportion using the two ratios.
Cross multiply and solve for .
Simplify.
Divide both sides of the equation by .
Solve.
The farmer can get .
All Common Core: 6th Grade Math Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)