All Common Core: High School - Geometry Resources
Example Questions
Example Question #9 : Relationships Between Angles, Radii, Chords, And Diameters Of Circles: Ccss.Math.Content.Hsg C.A.2
What is the measure of an inscribed angle with an arc measurement of ?
The inscribed angle is simply half the arc measurement.
Example Question #10 : Relationships Between Angles, Radii, Chords, And Diameters Of Circles: Ccss.Math.Content.Hsg C.A.2
What is the measure of an inscribed angle with an arc measurement of ?
The inscribed angle is simply half the arc measurement.
Example Question #21 : Circles
What is the measure of an inscribed angle with an arc measurement of ?
The inscribed angle is simply half the arc measurement.
Example Question #22 : Circles
What is the measure of an inscribed angle with an arc measurement of ?
The inscribed angle is simply half the arc measurement.
Example Question #1 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Example Question #2 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Example Question #1 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Example Question #2 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Example Question #1 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Example Question #1 : Inscribed And Circumscribed Circle Of Triangles: Ccss.Math.Content.Hsg C.A.3
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Certified Tutor
All Common Core: High School - Geometry Resources
