GMAT Math : Descriptive Statistics

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2051 : Problem Solving Questions

Five friends go out to a restaurant to celebrate the birthday of one of them. The cost of the meal for all of them including tax is \displaystyle \$280.00. They decide to leave a \displaystyle 15\% tip and to split the total amount equally. If the person celebrating his or her birthday does not pay, how much do each of the other four friends pay?

Possible Answers:

\displaystyle \$64.40

\displaystyle \$88.50

\displaystyle \$74.50

\displaystyle \$80.50

\displaystyle \$59.50

Correct answer:

\displaystyle \$80.50

Explanation:

The total cost of the meal including tax and the \displaystyle 15\% tip is:

\displaystyle 280\times(1+0.15)=322

They split the total amount equally between four of them, so each of those four people then pays:

\displaystyle \frac{322}{4}=80.5

Each of the four friends pays \displaystyle \$80.50.

Example Question #32 : Calculating Arithmetic Mean

Calculate the arithmetic mean for the following set of data:

\displaystyle (13, 7, 5, 6, 8, 9)

Possible Answers:

\displaystyle 5

\displaystyle 8

\displaystyle 7

\displaystyle 13

\displaystyle 9

Correct answer:

\displaystyle 8

Explanation:

To calculate the mean of a set of data, we sum the values and then divide by the number of values present. In this case we have 6 values, so we add them all together and then divide by 6 to find the arithmetic mean for this set of data:

\displaystyle \mu=\frac{\sum_{i=1}^{6}x_i}{6}=\frac{13+7+5+6+8+9}{6}=\frac{48}{6}=8

Example Question #33 : Calculating Arithmetic Mean

Calculate the mean of the following set of data:

\displaystyle \begin{Bmatrix} 7, 11, 8, 13, 14, 9, 8 \end{Bmatrix}

Possible Answers:

\displaystyle 9

\displaystyle 11

\displaystyle 14

\displaystyle 13

\displaystyle 10

Correct answer:

\displaystyle 10

Explanation:

To calculate the mean of a set of a data, we add up all the entries and then divide the result by the number of entries in the data set. There are seven entries in the given set, so we'll add them up and then divide by seven to find the mean:

\displaystyle \mu=\frac{7+11+8+13+14+9+8}{7}=\frac{70}{7}=10

Example Question #2052 : Problem Solving Questions

The arithmetic mean of \displaystyle x and \displaystyle y is 35. Also, \displaystyle x - y = 30. What is \displaystyle y ?

Possible Answers:

\displaystyle y = 20

\displaystyle y = 30

\displaystyle y = 25

\displaystyle y = 40

\displaystyle y = 35

Correct answer:

\displaystyle y = 20

Explanation:

If the arithmetic mean of \displaystyle x and \displaystyle y is 35, then 

\displaystyle \frac{x+ y}{2} = 35.

This, along with the statement 

\displaystyle x - y = 30,

form a system of equations that can be solved as follows:

\displaystyle x - y + y = 30 + y

\displaystyle x = 30 + y

Substitute:

\displaystyle \frac{ 30 + y+ y}{2} = 35

\displaystyle \frac{ 30 +2y}{2} = 35

\displaystyle \frac{ 30 +2y}{2} \cdot 2 = 35\cdot 2

\displaystyle 30 +2y = 70

\displaystyle 30 +2y - 30 = 70 - 30

\displaystyle 2y = 40

\displaystyle 2y \div 2 = 40 \div 2

\displaystyle y = 20

Example Question #2061 : Problem Solving Questions

The arithmetic mean of \displaystyle x and \displaystyle y is 66. The arithmetic mean of \displaystyle x and \displaystyle z is 60. The arithmetic mean of \displaystyle y and \displaystyle z is 72. Give the arithmetic mean of \displaystyle x\displaystyle y, and \displaystyle z.

Possible Answers:

\displaystyle 68

\displaystyle 66

Insufficient information is given to determine the mean.

\displaystyle 62

\displaystyle 64

Correct answer:

\displaystyle 66

Explanation:

The arithmetic mean of \displaystyle x and \displaystyle y is 64, so

\displaystyle \frac{x+ y}{2}= 66

Similarly, 

\displaystyle \frac{x+ z}{2}= 60

\displaystyle \frac{y+ z}{2}= 72

Add the expressions:

\displaystyle \frac{x+ y}{2} + \frac{x+ z}{2}+ \frac{y+ z}{2}= 66+ 60 +72

\displaystyle \frac{2x+2 y+ 2z}{2} = 198

\displaystyle x+y+z= 198

The arithmetic mean of \displaystyle x\displaystyle y, and \displaystyle z is 

\displaystyle \frac{x+y+z}{3}= \frac{198}{3} = 66

Example Question #55 : Descriptive Statistics

The arithmetic mean of \displaystyle x and \displaystyle y is 76. The arithmetic mean of \displaystyle x and \displaystyle z is 63. The arithmetic mean of \displaystyle y and \displaystyle z is 84.

Order \displaystyle x\displaystyle y, and \displaystyle z from least to greatest.

Possible Answers:

\displaystyle y, z, x

\displaystyle z, x, y

\displaystyle x, y, z

\displaystyle x, z, y

\displaystyle z, y, x

Correct answer:

\displaystyle x, z, y

Explanation:

The arithmetic mean of \displaystyle x and \displaystyle y is 76, so

\displaystyle \frac{x+ y}{2}= 76

Similarly, 

\displaystyle \frac{x+ z}{2}= 63

Subtract:

\displaystyle \frac{x+ y}{2}- \frac{x+ z}{2}= 76-63

\displaystyle \frac{ y-z}{2}}= 13

\displaystyle \frac{ y-z}{2}}\cdot 2= 13 \cdot 2

\displaystyle y-z = 26

\displaystyle y = z + 26,

so \displaystyle y > z

By similar reasoning:

\displaystyle \frac{x+ y}{2}= 76

\displaystyle \frac{y+ z}{2}= 84

\displaystyle \frac{y+ z}{2}- \frac{x+ y}{2}= 84 - 76

\displaystyle \frac{ z-x}{2}}= 8

\displaystyle \frac{ z-x}{2}}\cdot 2 = 8 \cdot 2

\displaystyle z-x = 16

\displaystyle z= x+16

so \displaystyle z > x

Therefore, \displaystyle x< z< y.

Example Question #51 : Descriptive Statistics

The arithmetic mean of \displaystyle 2x\displaystyle x+ 4\displaystyle 3x+7, and \displaystyle 2x-8 is 40. 

What is \displaystyle x (rounded to the nearest whole number, if applicable) ?

Possible Answers:

\displaystyle 23

\displaystyle 22

\displaystyle 21

\displaystyle 19

\displaystyle 20

Correct answer:

\displaystyle 20

Explanation:

The arithmetic mean of \displaystyle 2x\displaystyle x+ 4\displaystyle 3x+7, and \displaystyle 2x-8 is 40, so their sum divided by 4 is equal to 40.

\displaystyle \frac{2x + (x+4)+(3x+7)+(2x-8)}{4} = 40

\displaystyle \frac{2x + x +3x +2x +4+7-8}{4} = 40

\displaystyle \frac{8x +3}{4} = 40

\displaystyle \frac{8x +3}{4} \cdot 4 = 40\cdot 4

\displaystyle 8x+3 = 160

\displaystyle 8x = 157

\displaystyle x = 19 \frac{5}{8}

This rounds to 20.

Example Question #41 : Calculating Arithmetic Mean

Which of the following is the arithmetic mean of \displaystyle 10 + x\displaystyle x - 12\displaystyle 14 - x, and \displaystyle -x ?

Possible Answers:

\displaystyle 0.25x-3

\displaystyle 3

\displaystyle x+3

\displaystyle x-3

\displaystyle 0.25x+3

Correct answer:

\displaystyle 3

Explanation:

The arithmetic mean of \displaystyle 10 + x\displaystyle x - 12\displaystyle 14 - x, and \displaystyle -x is the sum of the expressions divided by 4, or:

\displaystyle \frac{(10 + x )+ (x-12)+ (14-x)+ (-x)}{4}

\displaystyle = \frac{x + x-x -x -12+ 14+ 10 }{4}

\displaystyle = \frac{12 }{4}

\displaystyle = 3

Example Question #2065 : Problem Solving Questions

The arithmetic mean of \displaystyle x\displaystyle y, and \displaystyle z is 200.

The arithmetic mean of \displaystyle x and \displaystyle y is 190.

The arithmetic mean of \displaystyle y and \displaystyle z is 210.

Evaluate the arithmetic mean of \displaystyle x and \displaystyle z.

Possible Answers:

\displaystyle 170

\displaystyle 200

\displaystyle 190

\displaystyle 230

\displaystyle 210

Correct answer:

\displaystyle 200

Explanation:

The arithmetic mean of \displaystyle x\displaystyle y, and \displaystyle z is 200, so

\displaystyle \frac{x+y+z}{3} = 200

\displaystyle \frac{x+y+z}{3} \cdot 3 = 200 \cdot 3

\displaystyle x+y+z = 600

The arithmetic mean of \displaystyle x and \displaystyle y is 190, so

\displaystyle \frac{x+y }{2} = 190

\displaystyle \frac{x+y }{2}\cdot 2 = 190 \cdot 2

\displaystyle x+ y = 380

\displaystyle x+y+z - (x+y) = 600 - 380

\displaystyle z = 220

The arithmetic mean of \displaystyle y and \displaystyle z is 210, so

\displaystyle \frac{y+z }{2} = 210

\displaystyle \frac{y+z }{2}\cdot 2 = 210 \cdot 2

\displaystyle y+z = 420

\displaystyle x+y+z - (y+z) = 600 - 420

\displaystyle x = 180

The arithmetic mean of \displaystyle x and \displaystyle z is

\displaystyle \frac{x+z }{2} = \frac{180+220 }{2}= \frac{400}{2} = 200

Example Question #51 : Descriptive Statistics

Determine the mean for the following set of numbers.

\displaystyle {6,2,5,5,8,4}

Possible Answers:

\displaystyle 4

\displaystyle 6

\displaystyle 5

\displaystyle 2

\displaystyle 8

Correct answer:

\displaystyle 5

Explanation:

To find the mean, simply sum up the numbers and divide by the amount of numbers.

\displaystyle \textup{mean}=\frac{6+2+5+5+8+4}{6}=5

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors