GMAT Math : Calculating the area of an equilateral triangle

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Triangles

Three straight sticks are gathered of exactly equal length. They are placed end to end on the ground to form a triangle. If the area of the triangle they form is 1.732 square feet. What is the length in feet of each stick?

Possible Answers:

\displaystyle 3\ feet

\displaystyle 1.5\ feet

\displaystyle 1\ foot

\displaystyle 2\ feet

\displaystyle 2.5\ feet

Correct answer:

\displaystyle 2\ feet

Explanation:

Equilateral_triangle

Let \displaystyle s be the length of a side of an equilateral triangle. Then the formula for the area of an equilateral triangle with side \displaystyle s is

 \displaystyle \frac{s^2\sqrt{3}}{4}

So solving \displaystyle 1.732 = \frac{s^2\sqrt{3}}{4} 

we get \displaystyle s=2.

 

Alternative Solution:

Without knowing this formula you can still use the Pythagorean Theorem to solve this. By drawing the height of the triangle, you split the triangle into 2 right triangles of equal size. The sides are the height, \displaystyle \frac{s}{2} and \displaystyle s. Letting \displaystyle h stand for the unknown height, we solve 

\displaystyle (\frac{s}{2})^2 + h^2= s^2 solving for \displaystyle h we get

 \displaystyle h=\sqrt(s^2-(\frac{s}{2})^2) = \sqrt(s^2-\frac{s^2}{4}) = \sqrt(\frac{3s^2}{4}) = \frac{s\sqrt(3)}{2}

The area for any triangle is the base times the height divided by 2. So

 \displaystyle 1.732=\frac{sh}{2} = \frac{s(s\sqrt(3))}{2*2} = \frac{s^2\sqrt(3)}{4} or \displaystyle s=2.

Example Question #2 : Equilateral Triangles

If an equilateral triangle has a side length of \displaystyle 3 and a height of \displaystyle 2, what is the area of the given triangle?

Possible Answers:

\displaystyle 6

\displaystyle 12

\displaystyle 9

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

To find the area of a traingle, we need the height and base lengths. Plug the given values into the following formula:

\displaystyle A= \frac{bh}{2}

\displaystyle = \frac{(3*2)}2 {}

\displaystyle =3

Example Question #1 : Equilateral Triangles

Export-png__3_

Triangle \displaystyle ABC is an equilateral triangle with side length \displaystyle 2. What is the area of the triangle?

Possible Answers:

\displaystyle \sqrt{3}

\displaystyle 2\sqrt{3}

\displaystyle 3

\displaystyle \frac{\sqrt{3}}{4}

\displaystyle \frac{\sqrt{3}}{2}

Correct answer:

\displaystyle \sqrt{3}

Explanation:

The area of an equilateral triangle is given by the following formula:

 \displaystyle \frac{s^{2}\sqrt{3}}{4}, where \displaystyle s is the length of a side.

Since we know the length of the side, we can simply plug it in the formula and we have \displaystyle \frac{4\sqrt{3}}{4} or \displaystyle \sqrt{3}, which is the final answer.

Example Question #52 : Triangles

Export-png__5_

\displaystyle ABC is an equilateral triangle inscribed in a cirlce with radius \displaystyle 3. What is the area of the triangle \displaystyle ABC?

Possible Answers:

\displaystyle 3\frac{\sqrt{3}}{4}

\displaystyle 4\sqrt{3}

\displaystyle 27\frac{\sqrt{3}}{4}

\displaystyle 27

\displaystyle 27\frac{\sqrt{5}}{4}

Correct answer:

\displaystyle 27\frac{\sqrt{3}}{4}

Explanation:

Since we are given a radius for the circle, we should be able to find the length of the height of the equilateral triangle, indeed, the center of the circle is \displaystyle \frac{2}{3} of the length of the height from any vertex.

Therefore, the height is \displaystyle 3=\frac{2}{3}\cdot h where \displaystyle h is the length of the height of the triangle. Therefore \displaystyle h=\frac{9}{2}.

We can now plug in this value in the formula of the height of an equilateral triangle\displaystyle h=s\frac{\sqrt{3}}{2}, where \displaystyle s is the length of the side of the triangle.

Therefore, \displaystyle s=\frac{9}{\sqrt{3}} or \displaystyle 3\sqrt{3}.

Now we should plug in this value into the formula for the area of an equilateral triangle \displaystyle a=s^{2}\frac{\sqrt{3}}{4} where \displaystyle a is the value of the area of the equilateral triangle. Therefore \displaystyle a= 27\frac{\sqrt{3}}{4}, which is our final answer. 

Example Question #2 : Calculating The Area Of An Equilateral Triangle

A given equilateral triangle has a side length \displaystyle 4 and a height \displaystyle 7 . What is the area of the triangle?

Possible Answers:

\displaystyle 11

Not enough information provided

\displaystyle 14

\displaystyle 22

\displaystyle 28

Correct answer:

\displaystyle 14

Explanation:

For a given equilateral triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(4)(7)

\displaystyle A=\frac{1}{2}(28)

\displaystyle A=14

 

Example Question #2 : Calculating The Area Of An Equilateral Triangle

A given right triangle has a base length \displaystyle 5 and a height \displaystyle 4 . What is the area of the triangle?

Possible Answers:

\displaystyle 18

\displaystyle 20

\displaystyle 9

Not enough information to solve

\displaystyle 10

Correct answer:

\displaystyle 10

Explanation:

For a given right triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(5)(4)

\displaystyle A=\frac{1}{2}(20)

\displaystyle A=10

Example Question #1 : Calculating The Area Of An Equilateral Triangle

A given right triangle has a base of length \displaystyle 9 and a height \displaystyle 8 . What is the area of the triangle?

Possible Answers:

\displaystyle 36

\displaystyle 17

\displaystyle 34

Not enough information to solve

\displaystyle 72

Correct answer:

\displaystyle 36

Explanation:

For a given right triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(9)(8)

\displaystyle A=\frac{1}{2}(72)

\displaystyle A=36

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors