All GMAT Math Resources
Example Questions
Example Question #3 : Algebra
Is ?
(1)
(2)
A: Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
D: EACH statement ALONE is sufficient
B: Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient
C: BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient
E: Statements (1) and (2) TOGETHER are not sufficient
A: Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
From statement 1 we get that and
.
So the first term is positive and the second term is negative, which means that is negative; therefore the statement 1 alone allows us to answer the question.
Statement 2 tells us that . If
, we have
which is less than
. Therefore in this case
.
For , we have
which is greater than
. So in this case
.
So statement 2 is insufficient.
Therefore the correct answer is A.
Example Question #3 : Exponents
Solve the following rational expression:
(1)
(2)
Both statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient
Statement (2) ALONE is sufficient, but Statement (1) ALONE is not sufficient
EACH statement ALONE is sufficient to answer the question
Both statements TOGETHER are not sufficient.
Statement (1) ALONE is sufficient, but Statement (2) ALONE is not sufficient
Statement (2) ALONE is sufficient, but Statement (1) ALONE is not sufficient
When replacing m=5 in the expression we get:
Therefore statement (1) ALONE is not sufficient.
When replacing m=2n in the expression we get:
Therefore statement (2) ALONE is sufficient.
Example Question #6 : Dsq: Understanding Exponents
Myoshi has been assigned to write one number in the circle and one number in the square in the diagram below in order to produce a number in scientifc notation.
.
Did Myoshi succeed?
Statement 1: Myoshi wrote in the circle.
Statement 2: Myoshi wrote in the square.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
A number in scientific notation takes the form
where and
is an integer of any sign.
Assuming Statement 1 alone, Myoshi did not succeed, since she entered an incorrect number into the circle - .
Statement 2 alone is inconclusive. Myoshi entered a correct number into the square, since is an integer. But the question is open, since it is not known whether she entered a correct number into the circle or not.
Example Question #7 : Dsq: Understanding Exponents
is a nonzero number. Is it negative or positive?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
All negative numbers are less than their (positive) squares, as are all positive numbers greater than 1. Therefore, if Statement 1 is assumed, .
can be determined to be positive.
Statement 2 alone is inconclusive. For example, if , then
, and if
,
. In both cases,
, but
has different signs in the two cases.
Example Question #4 : Exponents
is a nonzero number. Is it negative or positive?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Both statements together are inufficient to produce an answer. For example,
If , then
and
.
If , then
and
.
In both cases, and
, but the signs of
differ between cases.
Example Question #2 : Algebra
is a number not in the set
.
Of the elements , which is the greatest?
Statement 1: is a negative number.
Statement 2:
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 alone is inconclusive, as can be demonstrated by examining two negative values of other than
.
Case 1: .
Then
is the greatest of these values.
Case 2:
Then
is the greatest of these values.
Now assume Statement 2 alone. Either or
.
Case 1: .
Then , so
; similarly,
.
is the greatest of the three.
Case 2: .
Odd power is negative, and even powers
and
are positive, so one of the latter two is the greatest. Since
, it follows that
. It then follows that
, or
.
Again, is the greatest of the three.
Statement 2 alone is sufficient, but not Statement 1.
Example Question #6 : Algebra
Note: Figure NOT drawn to scale.
Examine the above diagram. True or false: .
Statement 1:
Statement 2: and
have the same perimeter.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
From Statement 1 alone, it follows by the similarity of the triangles that . These are congruent inscribed angles of a circle, which intercept congruent arcs, so
. Since congruent arcs have congruent chords,
.
Statement 2 alone only tells us the relative perimeters of the triangles. We have no way of determining the individual sidelengths or angle measures relative to each other, so Statement 2 alone is inconclusive.
Example Question #11 : Algebra
is a number not in the set
.
Of the elements , which is the greatest?
Statement 1: is a negative number.
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Assume both statements are known. The greatest of the three numbers must be or
, since even powers of negative numbers are positive and odd powers of negative numbers are negative.
Case 1:
Case 2: ,
then
In both cases, is negative and
, but in one case,
is the greatest number, and in the other,
is. The two statements together are inconclusive.
Example Question #801 : Data Sufficiency Questions
Philip has been assigned to write one number in the circle and one number in the square in the diagram below in order to produce a number in scientifc notation.
.
Did Philip succeed?
Statement 1: Philip wrote in the circle.
Statement 2: Philip wrote in the square.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
A number in scientific notation takes the form
where and
is an integer of any sign.
Statement 1 alone proves that Philip entered a correct number into the circle, since . Statement 2 alone proves that he entered a correct number into the square, since
is an integer. But each statement alone is insufficient, since each leaves uinclear whether the other number is valid. The two statements together, however, prove that Philip put correct numbers in both places, thereby writing a number in scientific notation.
Example Question #801 : Data Sufficiency Questions
is an integer. Is there a real number
such that
?
Statement 1: is negative
Statement 2: is even
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
The equivalent question is "does have a real
root?"
If you know only that is negative, you need to know whether
is even or odd; negative numbers have real odd-numbered roots, but not real even-numbered roots.
If you know only that is even, you need to know whether
is negative or nonnegative; negative numbers do not have real even-numbered roots, but nonnegative numbers do.
If you know both, however, then you know that the answer is no, since as stated before, negative numbers do not have real even-numbered roots.
Therefore, the answer is that both statements together are sufficient to answer the question, but neither statement alone is sufficient to answer the question.
All GMAT Math Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)