GMAT Math : Polygons

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Polygons

The following picture represents a garden with a wall built around it. The garden is represented by \displaystyle EFGH, the gray area,; and the wall is represented by the white area.

\displaystyle ABCD and \displaystyle EFGH are both squares and the area of the garden is equal to the area of the wall.

The length of \displaystyle AB is \displaystyle 7.

Polygon2

Find the area of the wall.

Possible Answers:

\displaystyle 49

\displaystyle 24.5

\displaystyle 14

\displaystyle 28

\displaystyle 19

Correct answer:

\displaystyle 24.5

Explanation:

AB's length is 7 so the area of ABCD is:

\displaystyle ABCD = 7\cdot 7=49.

The garden area (EFGH) is equal to the wall area \displaystyle (ABCD-EFGH).

So

\displaystyle EFGH=ABCD-EFGH,

therefore 

\displaystyle EFGH = 0.5 \cdot ABCD

\displaystyle EFGH = 0.5 \cdot 49 = 24.5.

Example Question #451 : Geometry

You are given Pentagon \displaystyle ABCDE such that:

\displaystyle m \angle A = \frac{7}{5} m \angle B 

and

 \displaystyle \angle B \cong \angle C \cong \angle D \cong \angle E

 

Calculate \displaystyle m \angle A

Possible Answers:

\displaystyle 100^{\circ }

\displaystyle 151.2^{\circ }

\displaystyle 140^{\circ }

This pentagon cannot exist

\displaystyle 108^{\circ }

Correct answer:

\displaystyle 140^{\circ }

Explanation:

Let \displaystyle x be the common measure of \displaystyle \angle B\displaystyle \angle C\displaystyle \angle D, and \displaystyle \angle E

Then 

\displaystyle m \angle A = \frac{7}{5} x

The sum of the measures of the angles of a pentagon is \displaystyle 180 (5 - 2) = 540^{\circ } degrees; this translates to the equation

\displaystyle \frac{7}{5} x + x + x + x + x = 540

or 

\displaystyle \frac{27}{5} x = 540

\displaystyle x = 540 \cdot \frac{5}{27} = 100

\displaystyle m \angle A = \frac{7}{5} x = \frac{7}{5} \cdot 100

\displaystyle m \angle A = 140

Example Question #691 : Gmat Quantitative Reasoning

Polygons_1

The above diagram shows a regular pentagon and a regular hexagon sharing a side. Give \displaystyle m\angle AVB.

Possible Answers:

\displaystyle 168^{\circ }

\displaystyle 150^{\circ }

\displaystyle 144^{\circ }

\displaystyle 120^{\circ }

\displaystyle 132^{\circ }

Correct answer:

\displaystyle 132^{\circ }

Explanation:

This can more easily be explained if the shared side is extended in one direction, and the new angles labeled.

Polygons_2

\displaystyle \angle1 and \displaystyle \angle 2 are exterior angles of the regular polygons. Also, the measures of the exterior angles of any polygon, one at each vertex, total \displaystyle 360^{\circ }. Therefore, 

 \displaystyle m \angle1 = \frac{360}{5} = 72^{\circ }

\displaystyle m \angle2 = \frac{360}{6} = 60^{\circ }

Add the measures of the angles to get \displaystyle m\angle AVB:

\displaystyle m\angle AVB = m\angle 1 + m\angle 2 = 72 + 60 = 132^{\circ }

Example Question #2 : Calculating An Angle In A Polygon

Which of the following cannot be the measure of an exterior angle of a regular polygon?

Possible Answers:

\displaystyle 6^{\circ }

\displaystyle 15^{\circ }

Each of the given choices can be the measure of an exterior angle of a regular polygon.

\displaystyle 16^{\circ }

\displaystyle 9^{\circ }

Correct answer:

\displaystyle 16^{\circ }

Explanation:

The sum of the measures of the exterior angles of any polygon, one per vertex, is \displaystyle 360^{\circ }. In a regular polygon of \displaystyle N sides , then all \displaystyle N of these exterior angles are congruent, each measuring \displaystyle \frac{360^{\circ }}{N}.

If \displaystyle x is the measure of one of these angles, then \displaystyle x = \frac{360^{\circ }}{N}, or, equivalently, \displaystyle N = \frac{360^{\circ }}{x}. Therefore, for \displaystyle x to be a possible measure of an exterior angle, it must divide evenly into 360. We divide each in turn:

\displaystyle 360 \div 6 = 60

\displaystyle 360 \div 9 = 40

\displaystyle 360 \div 15 = 24

\displaystyle 360 \div 16 = 22.5

Since 16 is the only one of the choices that does not divide evenly into 360, it cannot be the measure of an exterior angle of a regular polygon.

Example Question #1 : Calculating An Angle In A Polygon

Pentagon_and_square

Note: Figure NOT drawn to scale

The figure above shows a square inside a regular pentagon. Give \displaystyle m\angle 1.

Possible Answers:

\displaystyle 18^{\circ }

\displaystyle 24^{\circ }

\displaystyle 22^{\circ }

\displaystyle 30^{\circ }

\displaystyle 15^{\circ }

Correct answer:

\displaystyle 18^{\circ }

Explanation:

Each angle of a square measures \displaystyle 90^{\circ }; each angle of a regular pentagon measures \displaystyle 180 \cdot3 \div 5 = 108^{\circ }. To get \displaystyle m\angle 1, subtract:

\displaystyle 108 - 90 = 18^{\circ }.

Example Question #2 : Calculating An Angle In A Polygon

Hexagon

Note: Figure NOT drawn to scale.

Given:

\displaystyle \angle A \cong \angle C \cong \angle E

\displaystyle \angle B \cong \angle D \cong \angle F

\displaystyle m \angle A + 6^{\circ } = m \angle B

Evaluate \displaystyle m \angle A.

Possible Answers:

\displaystyle 114 ^{\circ }

\displaystyle 117 ^{ \circ }

\displaystyle 123 ^{ \circ }

\displaystyle 111 ^{ \circ }

\displaystyle 129 ^{ \circ }

Correct answer:

\displaystyle 117 ^{ \circ }

Explanation:

Call \displaystyle x the measure of \displaystyle \angle A

\displaystyle m \angle A = m \angle C = m \angle E = x

\displaystyle m \angle A + 6^{\circ } = m \angle B, and \displaystyle \angle B \cong \angle D \cong \angle F

so 

\displaystyle m \angle B = m \angle D = m \angle F = x + 6

 

The sum of the measures of the angles of a hexagon is \displaystyle 180 (6 - 2) = 720 ^{ \circ }, so 

 

\displaystyle m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + m \angle F = 720

\displaystyle x+ (x+6) +x + (x+6) + x + (x+6) = 720

\displaystyle 6x + 18 = 720

\displaystyle \ 6x = 702

\displaystyle \ x = 702 \div 6 = 117, which is the measure of \displaystyle \angle A.

Example Question #1 : Calculating An Angle In A Polygon

Which of the following figures would have exterior angles none of whose degree measures is an integer?

Possible Answers:

A regular polygon with thirty sides.

A regular polygon with twenty-four sides.

A regular polygon with forty-five sides.

A regular polygon with eighty sides.

A regular polygon with ninety sides.

Correct answer:

A regular polygon with eighty sides.

Explanation:

The sum of the degree measures of any polygon is \displaystyle 360^{\circ }. A regular polygon with \displaystyle N sides has exterior angles of degree measure \displaystyle \left (\frac{360}{N} \right )^{\circ }. For this to be an integer, 360 must be divisible by \displaystyle N

We can test each of our choices to see which one fails this test.

\displaystyle 360 \div 24 = 15

\displaystyle 360 \div 30 = 12

\displaystyle 360 \div 45 = 8

\displaystyle 360 \div 80 = 4.5

\displaystyle 360 \div 90 = 4

Only the eighty-sided regular polygon fails this test, making this the correct choice.

Example Question #3 : Calculating An Angle In A Polygon

Thingy

 

The above diagram shows a regular pentagon and a regular hexagon sharing a side. What is the measure of \displaystyle \angle ABC ?

Possible Answers:

\displaystyle 20 ^{\circ }

\displaystyle 18 ^{\circ }

\displaystyle 10 ^{\circ }

\displaystyle 15 ^{\circ }

\displaystyle 12 ^{\circ }

Correct answer:

\displaystyle 12 ^{\circ }

Explanation:

The measure of each interior angle of a regular pentagon is 

\displaystyle \frac{180 (5-2)}{5} = \frac{180 (3)}{5} = 108^{\circ }

The measure of each interior angle of a regular hexagon is 

\displaystyle \frac{180 (6-2)}{6} = \frac{180 (4)}{6} = 120^{\circ }

The measure of \displaystyle \angle ABC is the difference of the two, or \displaystyle 12 ^{\circ }.

Example Question #3 : Calculating An Angle In A Polygon

What is the arithmetic mean of the measures of the angles of a nonagon (a nine-sided polygon)?

Possible Answers:

The question cannot be answered without knowing the measures of the individual angles.

\displaystyle 108^{\circ }

\displaystyle 120^{\circ }

\displaystyle 135^{\circ }

\displaystyle 140^{\circ }

Correct answer:

\displaystyle 140^{\circ }

Explanation:

The sum of the measures of the nine angles of any nonagon is calculated as follows:

 \displaystyle 180 \cdot \left ( 9-2\right ) =180 \cdot 7= 1,260^{\circ }

Divide this number by nine to get the arithmetic mean of the measures:

\displaystyle 1,260\div 9 = 140 ^{\circ }

Example Question #2 : Calculating An Angle In A Polygon

You are given a quadrilateral and a pentagon. What is the mean of the measures of the interior angles of the two polygons?

Possible Answers:

\displaystyle 100^{\circ }

Insufficient information is given to answer the question.

\displaystyle 102^{\circ }

\displaystyle 96^{\circ }

\displaystyle 99^{\circ }

Correct answer:

\displaystyle 100^{\circ }

Explanation:

The mean of the measures of the four angles of the quadrilateral and the five angles of of the pentagon is their sum divided by 9.

The sum of the measures of the interior angles of any quadrilateral is \displaystyle 180 (4-2) = 360^{\circ }. The sum of the measures of the interior angles of any pentagon is \displaystyle 180 (5-2) = 540^{\circ }.

The sum of the measures of the interior angles of both polygons is therefore \displaystyle 360 + 540 = 900^{\circ }. Divide by 9:

\displaystyle 900 \div 9 = 100^{\circ }

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors