GMAT Math : Solving equations

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #351 : Algebra

 

 

Solve for \(\displaystyle X\):

\(\displaystyle 13+X-Y=2Y\)

Possible Answers:

\(\displaystyle X=-16Y\)

\(\displaystyle X=10\)

\(\displaystyle X=-13+3Y\)

\(\displaystyle X=13+-3Y\)

\(\displaystyle X=16Y\)

Correct answer:

\(\displaystyle X=-13+3Y\)

Explanation:

\(\displaystyle 13+X-Y=2Y\)

We need to isolate \(\displaystyle X\). Move all other terms to the right hand side of the equation:

\(\displaystyle 13+X-Y-13+Y=2Y-13+Y\)

Combine like terms:

\(\displaystyle X=-13+3Y\)

Example Question #41 : Equations

Solve for the value of \(\displaystyle x\):

\(\displaystyle |x-4|=-3x+5\)

Possible Answers:

\(\displaystyle (\frac{9}{4},\frac{1}{2})\)

\(\displaystyle (\frac{4}{9},\frac{1}{2})\)

\(\displaystyle (\frac{5}{4},\frac{3}{2})\)

\(\displaystyle (-\frac{9}{4},\frac{1}{2})\)

\(\displaystyle (-\frac{1}{2}, \frac{9}{4})\)

Correct answer:

\(\displaystyle (\frac{9}{4},\frac{1}{2})\)

Explanation:

\(\displaystyle |x-4|=-3x+5\)

To solve this absolute value equation, we need to set the right side of the equation equal to a positive and negative version in order to calculate the two options for absolute value.

\(\displaystyle x-4=-3x+5\)   OR      \(\displaystyle x-4=-(-3x+5)=3x-5\)

\(\displaystyle x+3x=5+4\)       OR      \(\displaystyle x-3x=-5+4\)

\(\displaystyle 4x=9\)                        OR      \(\displaystyle -2x=-1\)

\(\displaystyle x=\frac{9}{4}\)                          OR     \(\displaystyle x=\frac{1}{2}\)

Example Question #41 : Solving Equations

\(\displaystyle 4-n=5\)

\(\displaystyle 5m-8=12+3m\)

You are given the equations above. What is \(\displaystyle m-n\)?

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle -9\)

\(\displaystyle 9\)

\(\displaystyle 11\)

\(\displaystyle -11\)

Correct answer:

\(\displaystyle 11\)

Explanation:

We first solve each of the equations to find \(\displaystyle m\) and \(\displaystyle n\):

\(\displaystyle 4-n=5\)

\(\displaystyle -n=5-4\)

\(\displaystyle n=-1\)

 

\(\displaystyle 5m-8=12+3m\)

\(\displaystyle 5m-3m=12+8\)

\(\displaystyle 2m=20\)

\(\displaystyle m=10\)

\(\displaystyle m-n=10-(-1)=10+1=11\)

Therefore, \(\displaystyle m-n=11\).

Example Question #41 : Equations

You are given the following equation:

\(\displaystyle x=\frac{x-6}{3+x}\)

What is the value of \(\displaystyle x^{2}+2x+3\) ?

Possible Answers:

\(\displaystyle -1\)

\(\displaystyle -3\)

\(\displaystyle 0\)

\(\displaystyle -6\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle -3\)

Explanation:

First, we need to solve the provided equation for \(\displaystyle x\).

\(\displaystyle x=\frac{x-6}{3+x}\)

\(\displaystyle x(3+x)=x-6\)

\(\displaystyle 3x+x^{2}=x-6\)

\(\displaystyle 3x+x^{2}-x=-6\)

\(\displaystyle x^{2}+2x+6=0\)

We want to find the value of \(\displaystyle x^{2}+2x+3\). We can put the equation in this form by subtracting \(\displaystyle 3\) from each side:

\(\displaystyle x^{2}+2x+6-3=-3\)

\(\displaystyle x^{2}+2x+3=-3\)

Example Question #353 : Algebra

Solve \(\displaystyle \left | 2x+12\right |=20\).

Possible Answers:

\(\displaystyle x=8\) or \(\displaystyle x=-16\)

 \(\displaystyle x=4\) or \(\displaystyle x=-16\)

\(\displaystyle x=-16\)

 \(\displaystyle x=4\)

\(\displaystyle x=8\)

Correct answer:

 \(\displaystyle x=4\) or \(\displaystyle x=-16\)

Explanation:

Since we are solving an absolute value equation, \(\displaystyle \left | 2x+12\right |=20\), we must solve for both potential values of the equation:

1.) \(\displaystyle 2x+12=20\)

2.) \(\displaystyle 2x+12=-20\)

Solving Equation 1:

\(\displaystyle 2x+12=20\)

\(\displaystyle 2x=8\)

\(\displaystyle x=4\)

Solving Equation 2:

\(\displaystyle 2x+12=-20\)

\(\displaystyle 2x=-32\)

\(\displaystyle x=-16\)

Therefore, for \(\displaystyle \left | 2x+12\right |=20\)\(\displaystyle x=4\) or \(\displaystyle x=-16\)

Example Question #1441 : Gmat Quantitative Reasoning

Solve for \(\displaystyle y\)\(\displaystyle 3y-4x=7x+33\)

Possible Answers:

\(\displaystyle y=\frac{3}{11}x+11\)

\(\displaystyle y=\frac{11}{3}x+11\)

Not enough information provided 

\(\displaystyle y=-\frac{3}{11}x+11\)

\(\displaystyle y=-\frac{11}{3}x+11\)

Correct answer:

\(\displaystyle y=\frac{11}{3}x+11\)

Explanation:

In order to solve \(\displaystyle 3y-4x=7x+33\) for \(\displaystyle y\), we need to isolate \(\displaystyle y\) on one side of the equation:

\(\displaystyle 3y-4x=7x+33\)

\(\displaystyle 3y=11x+33\)

\(\displaystyle y=\frac{11}{3}x+11\)

 

Example Question #354 : Algebra

Which of the following is a solution to the equation \(\displaystyle 7x+3y=22\)?

Possible Answers:

\(\displaystyle x=1, y=5\)

Two of the other answers are correct.

\(\displaystyle x=5, y=1\)

\(\displaystyle x=4, y=2\)

\(\displaystyle x=2, y=3\)

Correct answer:

\(\displaystyle x=1, y=5\)

Explanation:

In order to find values of \(\displaystyle x\) and \(\displaystyle y\) for which \(\displaystyle 7x+3y=22\), we need to plug the values into the equation:

1.) \(\displaystyle x=1, y=5\)\(\displaystyle 7(1)+3(5)=7+15=22\) Correct

2.)\(\displaystyle x=5, y=1\)\(\displaystyle 7(5)+3(1)=35+3=38\) Incorrect

3.) \(\displaystyle x=2, y=3\)\(\displaystyle 7(2)+3(3)=14+9=23\) Incorrect

4.) \(\displaystyle x=4, y=2\)\(\displaystyle 7(4)+3(2)=28+6=34\) Incorrect

Therefore, the only correct answer is \(\displaystyle x=1, y=5\)

Example Question #1441 : Problem Solving Questions

Solve for \(\displaystyle x\)\(\displaystyle \frac{1}{3}x+\frac{2}{3}y=\frac{7}{9}\)

Possible Answers:

\(\displaystyle y=\frac{7}{3}-2x\)

\(\displaystyle x=\frac{3}{7}-2y\)

\(\displaystyle x=\frac{7}{3}-2y\)

Not enough information provided

\(\displaystyle x=\frac{2}{3}-7y\)

Correct answer:

\(\displaystyle x=\frac{7}{3}-2y\)

Explanation:

In order to solve the equation for \(\displaystyle x\), we need to isolate \(\displaystyle x\) on one side of the equation:

\(\displaystyle \frac{1}{3}x+\frac{2}{3}y=\frac{7}{9}\)

\(\displaystyle \frac{1}{3}x=\frac{7}{9}-\frac{2}{3}y\)

\(\displaystyle x=\frac{21}{9}-2y\)

Reducing the fraction,

\(\displaystyle x=\frac{7}{3}-2y\)

Example Question #41 : Solving Equations

Solve for \(\displaystyle d\) in the equation 

\(\displaystyle 3d + ad + y = 10\)

Possible Answers:

\(\displaystyle d= \frac{10 - y+a }{3 }\)

\(\displaystyle d= \frac{10 + y }{3+a}\)

\(\displaystyle d= \frac{10 - y }{3+a}\)

\(\displaystyle d= \frac{10 - y-a }{3 }\)

Correct answer:

\(\displaystyle d= \frac{10 - y }{3+a}\)

Explanation:

\(\displaystyle 3d + ad + y = 10\)

\(\displaystyle 3d + ad + y - y= 10 - y\)

\(\displaystyle 3d + ad = 10 - y\)

\(\displaystyle \left (3 + a \right )d = 10 - y\)

\(\displaystyle \frac{\left (3 + a \right )d }{3+a}= \frac{10 - y }{3+a}\)

\(\displaystyle d= \frac{10 - y }{3+a}\)

Example Question #363 : Algebra

Solve for \(\displaystyle w\) in the equation:

\(\displaystyle v = 1+ \sqrt[3]{w-7}\)

Possible Answers:

\(\displaystyle w = v^{3} -3v^{2}+3v+6\)

\(\displaystyle w = v^{3} +6\)

\(\displaystyle w = v^{3} +3v^{2}+3v-6\)

\(\displaystyle w = v^{3} +3v^{2}+3v+8\)

\(\displaystyle w = v^{3} -3v^{2}+3v-8\)

Correct answer:

\(\displaystyle w = v^{3} -3v^{2}+3v+6\)

Explanation:

\(\displaystyle v = 1+ \sqrt[3]{w-7}\)

\(\displaystyle v- 1 = 1+ \sqrt[3]{w-7} - 1\)

\(\displaystyle \sqrt[3]{w-7} = v- 1\)

\(\displaystyle \left (\sqrt[3]{w-7}\right )^{3} = \left (v- 1 \right )^{3}\)

\(\displaystyle w-7= v^{3} -3v^{2}+3v-1\)

\(\displaystyle w-7+ 7= v^{3} -3v^{2}+3v-1 + 7\)

\(\displaystyle w = v^{3} -3v^{2}+3v+6\)

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors