All GMAT Math Resources
Example Questions
Example Question #15 : Dsq: Calculating Whether Right Triangles Are Similar
Note: Figure NOT drawn to scale.
Refer to the above diagram.
True or false:
Statement 1: Arcs and have the same degree measure.
Statement 2: Arcs and have the same degree measure.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. and have the same degree measure, so the inscribed angles that intercept these arcs must also have the same degree measure - that is, . Since , both being right angles, this sets up the conditions of the Angle-Angle Postulate, so it follows that .
Assume Statement 2 alone. Major arc and major arc . by Statement 2, so
Again, the inscribed angles that intercept these arcs must also be congruent - that is, . Again, this, along with , prove that by way of the Angle-Angle Postulate.
Example Question #1 : Dsq: Calculating The Height Of A Right Triangle
is a right triangle where is a right angle. What is the length of the height ?
(1)
(1)
Statement 1 alone is sufficient
Statements 1 and 2 together are not sufficient.
Each statement alone is sufficient
Statement 2 alone is sufficient
Both statements together are sufficient
Both statements together are sufficient
To know the length of the height triangle, we would need to know the lengths of the triangle or the angles to have more information about the triangle.
Statement 1 only gives us a length of a side. There is nothing more we can calculate from what we know so far.
Statement 2 alone tells us that the triangle is isoceles. Indeed, ABC is a right triangle, if one of its angle is 45 degrees, than so must be another. Now, we are able to tell that the length of the height would be the same as half the hypothenuse. A single side would be sufficient to answer the problem. Statment 1 gives us that information. Therefore, both statements together are sufficient.
Example Question #2 : Dsq: Calculating The Height Of A Right Triangle
What is the length of the height of right triangle , where is a right angle?
(1)
(2)
Both statements together are sufficient
Each statement alone is sufficient
Statement (2) alone is sufficient
Statements (1) and (2) together are not sufficient.
Statement (1) alone is sufficient
Both statements together are sufficient
Since we are told that triangle ABC is a right triangle, to find the height, we just need the length of at least 2 other sides. From there, we can find the length of the height since in a right triangle, the height divides the triangle into two triangles with the same proportions. In other words . Therefore, we need to know the length of the sides of the triangle.
Example Question #1 : Dsq: Calculating The Height Of A Right Triangle
Consider right .
I) The longest side, , has a length of meters.
II) .
What is the height of ?
Both statements are needed to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Either statement is sufficient to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Both statements are needed to answer the question.
The height of a right triangle will be one of its side lengths.
I) tells us the length of our hypotenuse.
II) gives us the other two angle measurements.
They are both 45 degrees, which makes JKL a 45/45/90 triangle with side length ratios of .
Which we can use to find the height.
Example Question #4 : Dsq: Calculating The Height Of A Right Triangle
What is the height of the right triangle?
- The area of the right triangle is .
- The base of the right triangle measures .
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Statement 1 alone is sufficient, but statement 2 alone is not sufficient to answer the question.
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Statement 2 alone is sufficient, but statement 1 alone is not sufficient to answer the question.
Each statement alone is sufficient to answer the question.
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Statement 1:
More information is required to answer the question because our base and height can be and or and
Statement 2: We're given the base so we can narrow down the information from Statement 1 to and . If the base is , then the height must be .
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Example Question #2 : Dsq: Calculating The Height Of A Right Triangle
What is the height of the rigth triangle?
- The area of the right triangle is .
- The perimeter of the right triangle is .
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Each statement alone is sufficient to answer the question.
Statement 2 alone is sufficient, but statement 1 alone is not sufficient to answer the question.
Statement 1 alone is sufficient, but statement 2 alone is not sufficient to answer the question.
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Statement 1:
Additional information is required because our base and height can be and , and , or and .
Statement 2:
Even if we solve for our two values, we will not be able to determine which is the base and which is the height.
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Example Question #1 : Dsq: Calculating An Angle In A Right Triangle
Which interior angle of has the greatest measure?
Statement 1:
Statement 2: is a right angle.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
If Statement 1 is assumed, then by the converse of the Pythagorean Theorem, the triangle is a right triangle with right angle , which is explicitly stated in Statement 2. If is a right angle, then the other two angles are acute, since a triangle must have at least two acute angles. A right angle measures and an acute angle measures less, so from either statement, we can deduce that is the angle with greatest measure.
Example Question #412 : Geometry
Note: Figure NOT drawn to scale.
are acute. Is a right angle?
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
A right triangle must have its two acute angles complementary; if Statement 1 is assumed, then this is false, the triangle is not a right triangle, and is not a right angle.
If Statement 2 is assumed, then we apply the converse of the Pythagorean Theorem to show that the triangle is not right. The sides of a triangle have the relationship
only in a right triangle. If , then the statement to be tested would be
This statement is false, so the triangle is not a right triangle, and is not a right angle.
Example Question #172 : Triangles
is a right triangle , where is a right angle, and is a height of the triangle. What is the measurement of ?
(1)
(2)
Both statements taken together are sufficient
Each statement alone is sufficient
Statement 2 alone is sufficient
Statements 1 and 2 taken together are insufficient
Statement 1 alone is sufficient
Each statement alone is sufficient
Since we are already told that triangle ABC is a right triangle, we just need to find information about other angles or other sides.
Statement 1 allows us to calculate , simply by using the sum of the angles of a triangle, since we know AEC is also a right triangle because AE is the height.
Statement 2 is also sufficient because it allows us to know angle . Indeed, in a right triangle, the height divides the triangles in two triangles with similar properties. Therefore angle is the same as .
Therefore, each statement alone is sufficient.
Example Question #3 : Dsq: Calculating An Angle In A Right Triangle
Given: is a right triangle with height and is a right angle.
What is the size of ?
(1)
(2)
Statement 1 alone is sufficient
Statements 1 and 2 taken together are not sufficient
Both statements together are sufficient
Statement 2 alone is sufficient
Each statement alone is sufficient
Statement 1 alone is sufficient
In order to find the angles of right triangle ABC, we would need to find the length of the sides and maybe found that the triangle is isoceles, or is a special triangle with angles 30-60-90.
Statement one tells us that the height is equal to half the hypothenuse of the triangle. From that we can see that the triangle is isoceles. Indeed, an isoceles right triangle will always have its height equal to half the length of the hypothenuse. Therefore we will know that both angles are 45 degrees. Statement 1 alone is sufficient.
Statement 2 alone is insufficient because we don't know anything about the other sides of the triangle. Therefore it doesn't help us.