GMAT Math : Understanding exponents

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : Understanding Exponents

\(\displaystyle A\) is the additive inverse of the multiplicative inverse of \(\displaystyle B\)\(\displaystyle C\) is the additive inverse of the multiplicative inverse of \(\displaystyle D\). Which of the following is equal to the expression

\(\displaystyle (AB)^{CD}\)

regardless of the values of the variables?

Possible Answers:

\(\displaystyle (AB)^{CD}\) is an undefined quantity

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle -1\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle -1\)

Explanation:

The additive inverse of a number is the number which, when added to that number, yields sum 0; the multiplicative inverse of a number is the number which, when multiplied by that number, yields product 1.

Let \(\displaystyle X\) be the multiplicative inverse of \(\displaystyle B\). Then 

\(\displaystyle BX= 1\), or, equivalently, \(\displaystyle X = \frac{1}{B}\).

\(\displaystyle A\) is the additive inverse of this number, so

\(\displaystyle A + X = 0\)

\(\displaystyle A + \frac{1}{B}= 0\)

\(\displaystyle A = - \frac{1}{B}\)

\(\displaystyle A \cdot B = - \frac{1}{B} \cdot B\)

\(\displaystyle AB = -1\)

By similar reasoning, \(\displaystyle CD = -1\), and

\(\displaystyle (AB)^{CD} = \left ( -1\right ) ^{-1} = \frac{1}{-1} = -1\)

Example Question #81 : Exponents

\(\displaystyle FG= 2^{100}\)

\(\displaystyle HJ = 2^{10}\)

\(\displaystyle \frac{F}{J} = 4^{40}\)

Which of the following is equal to \(\displaystyle \frac{H}{G}\) ?

Possible Answers:

\(\displaystyle \frac{1}{2^{170}}\)

\(\displaystyle \frac{1}{2^{50}}\)

\(\displaystyle \frac{1}{2^{10}}\)

\(\displaystyle \frac{1}{2^{130}}\)

\(\displaystyle \frac{1}{2^{70}}\)

Correct answer:

\(\displaystyle \frac{1}{2^{10}}\)

Explanation:

Divide:

\(\displaystyle \frac{HJ}{FG}=\frac{ 2^{10}}{2^{100}} = 2^{10-100} = 2^{-90}\)

\(\displaystyle \frac{HJ}{FG}= \frac{H}{G} \cdot \frac{J}{F} = \frac{H}{G} \div \frac{F} {J}\)

\(\displaystyle \frac{F}{J} = 4^{40} = (2 ^{2})^{40} = 2 ^{2 \cdot 40 } = 2 ^{80}\)

Substitute:

\(\displaystyle \frac{H}{G} \div \frac{F} {J} = \frac{HJ}{FG}\)

\(\displaystyle \frac{H}{G} \div 2 ^{80}= 2^{-90}\)

\(\displaystyle \frac{H}{G} \div 2 ^{80}\cdot 2 ^{80} = 2^{-90} \cdot 2 ^{80}\)

\(\displaystyle \frac{H}{G} = 2^{-90+ 80} = 2^{-10} = \frac{1}{2^{10}}\)

 

 

Example Question #82 : Exponents

\(\displaystyle A\) is the additive inverse of \(\displaystyle B\)\(\displaystyle C\) is the multiplicative inverse of \(\displaystyle D\). Which of the following is equal to the expression

\(\displaystyle (A+B)^{C+D}\)

regardless of the values of the variables?

Possible Answers:

\(\displaystyle A - \frac{1}{A}\)

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle A + \frac{1}{A}\)

\(\displaystyle (A+B)^{C+D}\) must be an undefined quantity.

Correct answer:

\(\displaystyle 0\)

Explanation:

The additive inverse of a number is the number which, when added to that number, yields sum 0. Since \(\displaystyle A\) is the additive inverse of \(\displaystyle B\)

\(\displaystyle A + B = 0\)

The multiplicative inverse of a number is the number which, when multiplied by that number, yields product 1. Since \(\displaystyle C\) is the multiplicative inverse of \(\displaystyle D\), then 

\(\displaystyle CD = 1\), or \(\displaystyle D = \frac{1}{C}\).

It follows that

\(\displaystyle (A+B)^{C+D} = 0^{C+ \frac{1}{C}}\).

0 raised to any nonzero power is equal to 0, and \(\displaystyle C + \frac{1}{C}\) must be nonzero, so

\(\displaystyle 0^{C+ \frac{1}{C}} = 0\), the correct response.

Example Question #81 : Understanding Exponents

\(\displaystyle A\) is the additive inverse of \(\displaystyle B\)\(\displaystyle C\) is the additive inverse of \(\displaystyle D\). Which of the following is equal to the expression

\(\displaystyle (A+B)^{C+D}\)

regardless of the values of the variables?

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle A + \frac{1}{A}\)

\(\displaystyle 1\)

\(\displaystyle A - \frac{1}{A}\)

\(\displaystyle (A+B)^{C+D}\) must be an undefined quantity

Correct answer:

\(\displaystyle (A+B)^{C+D}\) must be an undefined quantity

Explanation:

The additive inverse of a number is the number which, when added to that number, yields sum 0. Since \(\displaystyle A\) is the additive inverse of \(\displaystyle B\) and \(\displaystyle C\) is the additive inverse of \(\displaystyle D\)

\(\displaystyle A + B = C+D = 0\)

and 

\(\displaystyle (A+B)^{C+D} = 0^{0}\),

which is an undefined expression.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors