GRE Subject Test: Math : Derivatives & Integrals

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trigonometric Integrals

Fnd the derivative of tan(x) with respect to x or

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} tan(x)dx\)

Possible Answers:

\(\displaystyle cos^2(x)\)

Derivative cannot be found

\(\displaystyle sec(x)\)

\(\displaystyle cos(x)\)

\(\displaystyle sec^2(x)\)

Correct answer:

\(\displaystyle sec^2(x)\)

Explanation:

The is one of the trigonometric integrals that must be memorized.

 

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} tan(x)dx=sec^2(x)\)

Other common trig derivatives that should be memorized are:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} sin(x)dx=cos(x)\)

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} cos(x)dx=-sin(x)\)

 

 

Example Question #2 : Trigonometric Integrals

Evaluate: 

\(\displaystyle \int_{0}^{\pi /3}\left ( \frac{cosx}{2}\right )dx\)

Possible Answers:

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{\pi}{3}\)

\(\displaystyle \frac{\sqrt3}{2}\)

\(\displaystyle \frac{\sqrt3}{4}\)

\(\displaystyle \frac{\sqrt3-4}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt3}{4}\)

Explanation:

1) The 1/2 is a constant, and so is pulled out front.

2) The integral of cos(x) is sin(x), by definition. 

3) Writing the limits for evaluation: 

\(\displaystyle \frac{1}{2}sin(x)|^{\pi/3}_{0} = \frac{1}{2}\left [ sin(\pi/3)-sin(0)\right ]\)

4) Using the unit circle, \(\displaystyle sin(\pi/3)\)  \(\displaystyle =\sqrt3/2\), and \(\displaystyle sin(0)=0\).

5)Simplifying:  

\(\displaystyle \frac{1}{2}\left [ \frac{\sqrt3}{2}-0\right ]=\frac{\sqrt3}{4}\)

Learning Tools by Varsity Tutors