High School Math : Solving and Graphing Exponential Equations

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Solving And Graphing Exponential Equations

Find the vertical asymptote(s) of \displaystyle y=\frac{x^3+2x+8}{x^2-36}.

Possible Answers:

\displaystyle x=6

There are no real vertical asymptotes.

\displaystyle x=-6 and \displaystyle x=6

\displaystyle x=36

\displaystyle x=\frac{3}{2}

Correct answer:

\displaystyle x=-6 and \displaystyle x=6

Explanation:

To find the vertical asymptotes, we set the denominator of the fraction equal to zero, as dividing anything by zero is "undefined." Since it's undefined, there's no way for us to graph that point!

Take our given equation, \displaystyle y=\frac{x^3+2x+8}{x^2-36}, and now set the denominator equal to zero:

\displaystyle 0=x^2-36.

\displaystyle 36=x^2

\displaystyle \sqrt{36}=\sqrt{x^2}

Don't forget, the root of a positive number can be both positive or negative (\displaystyle -6^2=36 as does \displaystyle 6^2), so our answer will be \displaystyle \pm6=x.

Therefore the vertical asymptotes are at \displaystyle x=-6 and \displaystyle x=6.

Example Question #21 : Exponents

Find the horizontal asymptote(s) of \displaystyle y=\frac{x^3+2x+8}{x^2-36}.

Possible Answers:

There are no real horizontal asymptotes.

\displaystyle y=0

\displaystyle y=\frac{3}{2}

\displaystyle y=1

\displaystyle y=6 and \displaystyle y=-6

Correct answer:

There are no real horizontal asymptotes.

Explanation:

To find the horizontal asymptote of the function, look at the variable with the highest exponent. In the case of our equation, \displaystyle y=\frac{x^3+2x+8}{x^2-36}, the highest exponent is \displaystyle x^3 in the numerator.

 

When the variable with the highest exponent is in the numberator, there are NO horizontal asymptotes. Horizontal asymptotes only appear when the greatest exponent is in the denominator OR when the exponents have same power in both the denominator and numerator.

Example Question #1 : Quadratic Functions

What are the \displaystyle x-intercepts of the equation?

\displaystyle y=\frac{x^2-9}{x^2-16}

Possible Answers:

There are no \displaystyle x-intercepts.

\displaystyle x=3

\displaystyle x=4,-4

\displaystyle x=2

\displaystyle x=3,-3

Correct answer:

\displaystyle x=3,-3

Explanation:

To find the x-intercepts of the equation, we set the numerator equal to zero.

\displaystyle 0=x^2-9

\displaystyle 9=x^2

\displaystyle \sqrt{9}=\sqrt{x^2}

\displaystyle 3,-3=x

Example Question #1 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Find the vertical asymptote of the equation.

\displaystyle y=\frac{x^2-9}{x^2-16}

Possible Answers:

\displaystyle x=0

\displaystyle x=4, -4

There are no vertical asymptotes.

\displaystyle x=1

\displaystyle x=4

Correct answer:

\displaystyle x=4, -4

Explanation:

To find the vertical asymptotes, we set the denominator of the function equal to zero and solve.

\displaystyle 0=x^2-16

\displaystyle 16=x^2

\displaystyle \sqrt{16}=\sqrt{x^2}

\displaystyle 4, -4=x

Example Question #11 : Solving And Graphing Exponential Equations

\displaystyle y=\frac{x^2-64}{x+2}

What is the horizontal asymptote of this equation?

Possible Answers:

There is no horizontal asymptote.

\displaystyle y=0

\displaystyle y=32

\displaystyle y=1

\displaystyle y=-2

Correct answer:

There is no horizontal asymptote.

Explanation:

Since the exponent of the leading term in the numerator is greater than the exponent of the leading term in the denominator, there is no horizontal asymptote.

Example Question #1 : Solving Exponential Equations

Which value for \displaystyle x satisfies the equation \displaystyle 4^x = \frac{192}{x}?

 

Possible Answers:

\displaystyle 5

\displaystyle \frac{3}{2}

\displaystyle 4

\displaystyle \frac{2}{3}

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

\displaystyle 3 is the only choice from those given that satisfies the equation. Substition of \displaystyle 3 for \displaystyle x gives:

\displaystyle 4^3 = \frac{192}{3} \rightarrow 64 = 64

Example Question #2 : Solving Exponential Equations

Solve for \displaystyle x:

\displaystyle 2x^2 - 32 =0

Possible Answers:

\displaystyle x = 16

\displaystyle x = \{-4, 4\}

\displaystyle x = 4

\displaystyle x = -4

\displaystyle x = \{-4, 0, 4\}

Correct answer:

\displaystyle x = \{-4, 4\}

Explanation:

To solve for \displaystyle x in the equation \displaystyle 2x^2 - 32 =0

Factor \displaystyle 2 out of the expression on the left of the equation:

\displaystyle \rightarrow 2(x^2 - 16) =0

Use the "difference of squares" technique to factor the parenthetical term on the left side of the equation.

\displaystyle \rightarrow 2(x+4)(x-4)=0

Any variable that causes any one of the parenthetical terms to become \displaystyle 0 will be a valid solution for the equation. \displaystyle x+4 becomes \displaystyle 0 when \displaystyle x is \displaystyle -4, and \displaystyle x-4 becomes \displaystyle 0 when \displaystyle x is \displaystyle 4, so the solutions are \displaystyle -4 and \displaystyle 4.

Example Question #32 : Exponents

Solve for \displaystyle y (nearest hundredth):

\displaystyle 8^{y} = 100

Possible Answers:

\displaystyle 2.53

\displaystyle 1.78

\displaystyle 2.21

\displaystyle 1.23

\displaystyle 1.10

Correct answer:

\displaystyle 2.21

Explanation:

Take the common logarithm of both sides and solve for \displaystyle y:

\displaystyle 8^{y} = 100

\displaystyle \log 8^{y} = \log 100

\displaystyle y \log 8 =2

\displaystyle y =\frac{2}{\log 8} \approx \frac{2}{0.9031} \approx 2.21

Example Question #1 : Solving Exponential Equations

Solve for \displaystyle x (nearest hundredth):

\displaystyle 4 ^{2x - 7} = \frac{1}{256}

Possible Answers:

\displaystyle x = 5.5

\displaystyle x = - 5.5

\displaystyle x = 1.5\displaystyle x = 1 .5

\displaystyle x=-4

\displaystyle x=2

Correct answer:

\displaystyle x = 1.5\displaystyle x = 1 .5

Explanation:

\displaystyle \frac{1}{256} = \frac{1}{4 ^{4}} = 4 ^{-4}, so \displaystyle 4 ^{2x - 7} = \frac{1}{256} can be rewritten as

\displaystyle 4 ^{2x - 7} = 4 ^{-4}

\displaystyle \log_{4} 4 ^{2x - 7} =\log_{4} 4 ^{-4}

\displaystyle 2x - 7 = -4

\displaystyle 2x - 7 + 7 = -4+ 7

\displaystyle 2x = 3

\displaystyle x = 1 .5

Example Question #33 : Exponents

Solve for \displaystyle t (nearest hundredth):

\displaystyle 80 ^{t} = 39

Possible Answers:

\displaystyle t=0.31

\displaystyle t =0.84

\displaystyle t=0.62

\displaystyle t=0.72

\displaystyle t=1.20

Correct answer:

\displaystyle t =0.84

Explanation:

One method: Take the natural logarithm of both sides and solve for \displaystyle t:

\displaystyle 80 ^{t} = 39

\displaystyle \ln 80 ^{t} = \ln 39

\displaystyle t \ln 80 = \ln 39

\displaystyle t =\frac{ \ln 39}{ \ln 80} \approx \frac{ 3.66}{ 4.38} \approx 0.84

Learning Tools by Varsity Tutors