High School Math : Radicals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Square Roots

Simplify the expression. Find the positive solution only.

\displaystyle \sqrt{50x^3y^4}

Possible Answers:

\displaystyle 5xy\sqrt{2x}

\displaystyle xy^2\sqrt{50xy^2}

\displaystyle 25x^2y^4\sqrt{2x}

\displaystyle 25xy

\displaystyle 5xy^2\sqrt{2x}

Correct answer:

\displaystyle 5xy^2\sqrt{2x}

Explanation:

When working in square roots, each component can be treated separately.

\displaystyle \sqrt{50x^3y^4}=\sqrt{50}\sqrt{x^3}\sqrt{y^4}

Now, we can simplify each term.

\displaystyle \sqrt{50}=5\sqrt{2}

\displaystyle \sqrt{x^3}=x\sqrt{x}

\displaystyle \sqrt{y^4}=y^2

Combine the simplified terms to find the answer. Anything outside of the square root is combined, while anything under the root is combined under the root.

\displaystyle (5\sqrt{2})(x\sqrt{x})(y^2)=5xy^2\sqrt{2x}

Example Question #1 : Understanding Radicals

Convert the radical to exponential notation.

\displaystyle \small \sqrt[4]{13}

Possible Answers:

\displaystyle \small 169

\displaystyle \small \sqrt{13^4}

\displaystyle 13^{\frac{1}{4}}

\displaystyle \small 13^4

Correct answer:

\displaystyle 13^{\frac{1}{4}}

Explanation:

Remember that any term outside the radical will be in the denominator of the exponent.

\displaystyle \sqrt[b]{x^a}=x^{\frac{a}{b}}

Since \displaystyle 13 does not have any roots, we are simply raising it to the one-fourth power.

\displaystyle \sqrt[4]{13}=13^{\frac{1}{4}}

Example Question #2 : Understanding Radicals

What is the value of \displaystyle 9^ \frac{5}{2}?

Possible Answers:

27

3

9

2.41

243

Correct answer:

243

Explanation:

An exponent written as a fraction can be rewritten using roots.  \displaystyle 9^ \frac{5}{2} can be reqritten as \displaystyle \sqrt[2]{9^5}.  The bottom number on the fraction becomes the root, and the top becomes the exponent you raise the number to. \displaystyle \sqrt[2]{9^5} is the same as \displaystyle (\sqrt[2]{9})^{5}=3^{5}. This will give us the answer of 243.

Example Question #1 : Expressing Radicals As Exponents

Express the following radical in rational (exponential) form:

\displaystyle \sqrt{8x^3y^4}

Possible Answers:

\displaystyle 2^{(\frac{3}{2})}x^{(\frac{3}{2})}y^{(\frac{3}{2})}

\displaystyle 2^2x^{(\frac{3}{2})}y^2

\displaystyle 2^{(\frac{3}{2})}x^{(\frac{3}{2})}y^2

\displaystyle 2^2x^2y^2

\displaystyle 2^{(\frac{3}{2})}x^2y^2

Correct answer:

\displaystyle 2^{(\frac{3}{2})}x^{(\frac{3}{2})}y^2

Explanation:

To convert the radical to exponent form, begin by converting the integer:

\displaystyle \sqrt{8x^3y^4}

\displaystyle =\sqrt{2^3x^3y^4} 

Now, divide each exponent by \displaystyle 2 to clear the square root:

\displaystyle =2^{(\frac{3}{2})}x^{(\frac{3}{2})}y^{(\frac{4}{2})}

Finally, simplify the exponents:

\displaystyle =2^{(\frac{3}{2})}x^{(\frac{3}{2})}y^2

Example Question #2 : Expressing Radicals As Exponents

Express the following radical in rational (exponential) form:

\displaystyle \sqrt[4]{96a^5b^7c^8}

Possible Answers:

\displaystyle 2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^2

\displaystyle 3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^2

\displaystyle 3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{1}{4}}b^{\frac{7}{4}}c^2

\displaystyle 3^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^2

\displaystyle 3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}

Correct answer:

\displaystyle 3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^2

Explanation:

To convert the radical to exponent form, begin by converting the integer:

\displaystyle \sqrt[4]{96a^5b^7c^8}

\displaystyle =\sqrt[4]{3\cdot 2^5a^5b^7c^8}

Now, divide each exponent by \displaystyle 4 to cancel the radical:

\displaystyle =3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^{\frac{8}{4}}

Finally, simplify the exponents:

\displaystyle =3^{\frac{1}{4}}2^{\frac{5}{4}}a^{\frac{5}{4}}b^{\frac{7}{4}}c^2

 

Example Question #1 : Expressing Radicals As Exponents

Which fraction is equivalent to \displaystyle \frac{x^{\frac{5}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}?

Possible Answers:

\displaystyle \frac{x^3+x^{\frac{5}{2}}y^\frac{1}{2}}{x+y}

\displaystyle \frac{x^3-x^{\frac{5}{2}}y^\frac{1}{2}}{x+y}

\displaystyle \frac{x^3-x^{\frac{5}{2}}y^\frac{1}{2}}{x-y}

\displaystyle \frac{x^3+x^{\frac{5}{2}}y^\frac{1}{2}}{x-y}

Correct answer:

\displaystyle \frac{x^3-x^{\frac{5}{2}}y^\frac{1}{2}}{x-y}

Explanation:

Multiply the numerator and denominator by the compliment of the denominator:

\displaystyle =\frac{x^{\frac{5}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}} \cdot \frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}

Simplify the expression:

\displaystyle =\frac{x^3-x^{\frac{5}{2}}y^\frac{1}{2}}{x-y}

Example Question #3 : Understanding Radicals

Simplify the following radical. Express in rational (exponential) form.

\displaystyle \frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}-x^{\frac{-1}{3}}}

Possible Answers:

\displaystyle \frac{x}{x^2-1}

\displaystyle \frac{x}{x-1}

\displaystyle \frac{x}{x-2}

\displaystyle \frac{x^2}{x-1}

Correct answer:

\displaystyle \frac{x}{x-1}

Explanation:

Multiply the numerator and denominator by the compliment of the denominator:

\displaystyle =\frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}-x^{\frac{-1}{3}}} \cdot \frac{x^{\frac{1}{3}}}{x^{\frac{1}{3}}}

Simplify the expression:

\displaystyle =\frac{x}{x-1}

Example Question #51 : Algebra Ii

Choose the fraction equivalent to \displaystyle \frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}.

Possible Answers:

\displaystyle \frac{x-2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x-y}

\displaystyle \frac{x+2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x+y}

\displaystyle \frac{x-2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x+y}

\displaystyle \frac{x+2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x-y}

Correct answer:

\displaystyle \frac{x-2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x-y}

Explanation:

Multiply the numerator and denominator by the compliment of the denominator:

\displaystyle =\frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}} \displaystyle \cdot \frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}

Simplify the expression:

\displaystyle =\frac{x-2x^{\frac{1}{2}}y^{\frac{1}{2}}+y}{x-y}

Example Question #5 : Understanding Radicals

Simplify the following radical. Express in rational (exponential) form.

\displaystyle (\frac{a^{\frac{-2}{3}}}{2^{\frac{1}{2}}a^2})^{\frac{-1}{2}}

Possible Answers:

\displaystyle 2^{\frac{1}{3}}a^{\frac{4}{3}}

\displaystyle 2^{\frac{1}{4}}a^{\frac{4}{3}}

\displaystyle 2^{\frac{1}{4}}a^{\frac{5}{3}}

\displaystyle 2^{\frac{1}{2}}a^{\frac{4}{3}}

Correct answer:

\displaystyle 2^{\frac{1}{4}}a^{\frac{4}{3}}

Explanation:

Multiply the numerator and denominator to the exponent:

\displaystyle (\frac{a^{\frac{-2}{3}}}{2^{\frac{1}{2}}a^2})^{\frac{-1}{2}}

\displaystyle =\frac{a^{\frac{1}{3}}}{2^{\frac{-1}{4}}a^{-1}}

Simplify the expression by combining like terms:

\displaystyle =2^{\frac{1}{4}}a^{\frac{4}{3}}

Example Question #3 : Expressing Radicals As Exponents

Express the following radical in rational (exponential) form:

\displaystyle \sqrt[3]{16x^5y^6z^8}

Possible Answers:

\displaystyle 2^2x^{\frac{5}{3}}y^2z^{\frac{8}{3}}

\displaystyle 2^{\frac{4}{3}}x^{\frac{5}{3}}y^2z^{\frac{8}{3}}

\displaystyle 2^{\frac{4}{3}}x^2y^2z^{\frac{8}{3}}

\displaystyle 2^{\frac{4}{3}}x^{\frac{5}{3}}y^2z^2

\displaystyle 2^{\frac{4}{3}}x^{\frac{5}{3}}y^{\frac{7}{3}}z^{\frac{8}{3}}

Correct answer:

\displaystyle 2^{\frac{4}{3}}x^{\frac{5}{3}}y^2z^{\frac{8}{3}}

Explanation:

To convert the radical to exponent form, begin by converting the integer:

\displaystyle \sqrt[3]{16x^5y^6z^8}

\displaystyle =\sqrt[3]{2^4x^5y^6z^8}

Now, divide each exponent by \displaystyle 3 to remove the radical:

\displaystyle =2^{\frac{4}{3}}x^{\frac{5}{3}}y^{\frac{6}{3}}z^{\frac{8}{3}}

Finally, simplify the exponents:

\displaystyle =2^{\frac{4}{3}}x^{\frac{5}{3}}y^2z^{\frac{8}{3}}

Learning Tools by Varsity Tutors