High School Math : Using the Quadratic Formula

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #341 : Algebra Ii

Solve using the quadratic formula:

\(\displaystyle 2x^2+2x+3=0\)

Possible Answers:

\(\displaystyle x= \frac{-1 \pm i\sqrt{5}}{3}\)

\(\displaystyle x= \frac{-2 \pm i\sqrt{5}}{3}\)

\(\displaystyle x= \frac{-1 \pm i\sqrt{5}}{2}\)

\(\displaystyle x= \frac{-3 \pm i\sqrt{5}}{2}\)

\(\displaystyle x= \frac{-2 \pm i\sqrt{5}}{2}\)

Correct answer:

\(\displaystyle x= \frac{-1 \pm i\sqrt{5}}{2}\)

Explanation:

Use the quadratic formula to solve:

\(\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\)

\(\displaystyle a = 2\)

\(\displaystyle b = 2\)

\(\displaystyle c = 3\)

\(\displaystyle x = \frac{-(2) \pm \sqrt{(2)^2-4(2)(3)}}{2(2)}\)

\(\displaystyle x = \frac{-2 \pm \sqrt{-20}}{4}\)

\(\displaystyle x = \frac{-2 \pm 2i\sqrt{5}}{4}\)

\(\displaystyle x = \frac{-1 \pm i\sqrt{5}}{2}\)

Example Question #91 : Intermediate Single Variable Algebra

Solve using the quadratic formula:

\(\displaystyle 2a^2-5a+4=0\)

Possible Answers:

\(\displaystyle a=\frac{4 \pm i\sqrt{7}}{4}\)

\(\displaystyle a=\frac{6 \pm i\sqrt{7}}{4}\)

\(\displaystyle a=\frac{3 \pm i\sqrt{7}}{4}\)

\(\displaystyle a=\frac{7 \pm i\sqrt{7}}{4}\)

\(\displaystyle a=\frac{5 \pm i\sqrt{7}}{4}\)

Correct answer:

\(\displaystyle a=\frac{5 \pm i\sqrt{7}}{4}\)

Explanation:

Use the quadratic formula to solve:

\(\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\)

\(\displaystyle a = 2\)

\(\displaystyle b = -5\)

\(\displaystyle c = 4\)

\(\displaystyle a = \frac{-(-5) \pm \sqrt{(-5)^2-4(2)(4)}}{2(2)}\)

\(\displaystyle a = \frac{5 \pm \sqrt{-7}}{4}\)

\(\displaystyle a = \frac{5 \pm i\sqrt{7}}{4}\)

Example Question #1 : Using The Quadratic Formula

Solve using the quadratic formula:

\(\displaystyle ax^2+bx+3b=0\)

Possible Answers:

\(\displaystyle x=\frac{-b \pm \sqrt{b^2-12ab}}{2a}\)

\(\displaystyle x=\frac{-b \pm \sqrt{b^2-8ab}}{2a}\)

\(\displaystyle x=\frac{b \pm \sqrt{b^2-12ab}}{2a}\)

\(\displaystyle x=\frac{-b \pm \sqrt{b^2-12ab}}{a}\)

\(\displaystyle x=\frac{b \pm \sqrt{b^2-12ab}}{a}\)

Correct answer:

\(\displaystyle x=\frac{-b \pm \sqrt{b^2-12ab}}{2a}\)

Explanation:

Use the quadratic formula to solve:

\(\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\)

\(\displaystyle a = a\)

\(\displaystyle b = b\)

\(\displaystyle c = 3b\)

\(\displaystyle x = \frac{-(b) \pm \sqrt{(b)^2-4(a)(3b)}}{2(a)}\)

\(\displaystyle x = \frac{-b \pm \sqrt{b^2-12ab}}{2a}\)

Example Question #1 : Using The Quadratic Formula

Solve using the quadratric formula:

\(\displaystyle bx^2+acx+c=0\)

Possible Answers:

\(\displaystyle x=\frac{-ac\sqrt{a^2c^2-4bc}}{b}\)

\(\displaystyle x=\frac{-ac\sqrt{a^2c^2-2bc}}{2b}\)

\(\displaystyle x=\frac{-ac\sqrt{a^2c^2-4bc}}{2b}\)

\(\displaystyle x=\frac{ac\sqrt{a^2c^2-4bc}}{2b}\)

\(\displaystyle x=\frac{ac\sqrt{a^2c^2-4bc}}{b}\)

Correct answer:

\(\displaystyle x=\frac{-ac\sqrt{a^2c^2-4bc}}{2b}\)

Explanation:

Use the quadratic formula to solve:

\(\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}\)

\(\displaystyle a = b\)

\(\displaystyle b = ac\)

\(\displaystyle c = c\)

\(\displaystyle x = \frac{-(ac) \pm \sqrt{(ac)^2-4(b)(c)}}{2(b)}\)

\(\displaystyle x = \frac{-ac \pm \sqrt{a^2c^2-4bc}}{2b}\)

Example Question #1 : Using The Quadratic Formula

A baseball that is thrown in the air follows a trajectory of \(\displaystyle h(t)= -4t^2 +12t+6\), where \(\displaystyle h(t)\) is the height of the ball in feet and \(\displaystyle t\) is the time elapsed in seconds. How long does the ball stay in the air before it hits the ground?

Possible Answers:

Between 3 and 3.5 seconds

Between 2 and 2.5 seconds

Between 3.5 and 4 seconds

Between 2.5 and 3 seconds

 Between 4 and 4.5 seconds 

Correct answer:

Between 3 and 3.5 seconds

Explanation:

To solve this, we look at the equation \(\displaystyle h(t)=0\).

Setting the equation equal to 0 we get \(\displaystyle 0= -4t^2 +12t+6\).

Once in this form, we can use the Quadratic Formula to solve for \(\displaystyle t\).

The quadratic formula says that if \(\displaystyle 0= -ax^2 +bx+c\), then 

\(\displaystyle x= \frac{-b\pm\sqrt(b^2-4ac)}{2a}\).

Plugging in our values:

 \(\displaystyle t= \frac{-12\pm\sqrt{(12^2-4(-4)(6)}}{2(-4)}=\frac{-12\pm \sqrt{240}}{-8}= \frac{12\pm15.5}{8}\)

Therefore \(\displaystyle t=3.4375\) or \(\displaystyle -.4375\) and since we are looking only for positive values (because we can't have negative time), 3.4375 seconds is our answer.

Learning Tools by Varsity Tutors