HSPT Quantitative : How to work with number series

Study concepts, example questions & explanations for HSPT Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #151 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 17,14.8,12.6,10.4,\)___

Possible Answers:

\(\displaystyle 7.2\)

\(\displaystyle 8.6\)

\(\displaystyle 7.6\)

\(\displaystyle 8.2\)

Correct answer:

\(\displaystyle 8.2\)

Explanation:

The pattern is to subtract \(\displaystyle 2.2\) each time. The last operation is \(\displaystyle 10.4-2.2=8.2\).

Example Question #152 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 135,90,60,\)___

Possible Answers:

\(\displaystyle 25\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 35\)

Correct answer:

\(\displaystyle 40\)

Explanation:

The pattern is to divide by \(\displaystyle 1.5\) each time. The last operation is \(\displaystyle 6\div1.5=40\).

Example Question #153 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 10,21,10,22,10,23,10,\)__

Possible Answers:

\(\displaystyle 21\)

\(\displaystyle 23\)

\(\displaystyle 24\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 24\)

Explanation:

The main pattern for this series is to add \(\displaystyle 1\) each time, but there is a \(\displaystyle 10\) in between each element of that main pattern. Ignore the \(\displaystyle 10\)'s to see the pattern. The last operation is \(\displaystyle 23+1=24\).

Example Question #154 : How To Work With Number Series

What number should fill in the blank in this series?

\(\displaystyle 42,36,30,\)___\(\displaystyle ,18\)

Possible Answers:

\(\displaystyle 26\)

\(\displaystyle 28\)

\(\displaystyle 24\)

\(\displaystyle 22\)

Correct answer:

\(\displaystyle 24\)

Explanation:

The pattern is to subtract \(\displaystyle 6\) each time. Therefore the missing number is \(\displaystyle 30-6=24\).

Example Question #155 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 76,80,40,44,22,26,\)__

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 20\)

\(\displaystyle 16\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 13\)

Explanation:

The pattern is to add \(\displaystyle 4\), then divide by \(\displaystyle 2\). The last operation is \(\displaystyle 26\div2=13\).

Example Question #156 : How To Work With Number Series

Find the next number in the following sequence:

\(\displaystyle .3,.25,.2,.15,\)___

Possible Answers:

\(\displaystyle .5\)

\(\displaystyle .1\)

\(\displaystyle .125\)

\(\displaystyle .01\)

Correct answer:

\(\displaystyle .1\)

Explanation:

The pattern is to subtract \(\displaystyle .05\) every time. The last operation is \(\displaystyle .15-.05=.1\).

Example Question #157 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 1350,1288,1226,1164,\)___

Possible Answers:

\(\displaystyle 1100\)

\(\displaystyle 1102\)

\(\displaystyle 1113\)

\(\displaystyle 1142\)

Correct answer:

\(\displaystyle 1102\)

Explanation:

The pattern is to subtract \(\displaystyle 62\) each time. The last operation is \(\displaystyle 1164-64=1102\).

Example Question #158 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle 103, 98, 196, 191, 382,\) __

Possible Answers:

\(\displaystyle 398\)

\(\displaystyle 377\)

\(\displaystyle 456\)

\(\displaystyle 764\)

Correct answer:

\(\displaystyle 377\)

Explanation:

The pattern is subtract \(\displaystyle 5\), then multiply by \(\displaystyle 2\). The last operation is \(\displaystyle 382-5=377\).

Example Question #159 : How To Work With Number Series

What number should come next in this series?

\(\displaystyle \frac{1}{8},\frac{1}{2},2,8,\)__

Possible Answers:

\(\displaystyle \frac{1}{16}\)

\(\displaystyle 32\)

\(\displaystyle 40\)

\(\displaystyle 64\)

Correct answer:

\(\displaystyle 32\)

Explanation:

The pattern for this series is to multiply by \(\displaystyle 4\) each time.

The last operation is \(\displaystyle 8\cdot4=32\).

Example Question #160 : How To Work With Number Series

What is the next number in the sequence?

99, 110, 121, 132, 143, _______

Possible Answers:

\(\displaystyle 138\)

\(\displaystyle 147\)

\(\displaystyle 157\)

\(\displaystyle 154\)

\(\displaystyle 148\)

Correct answer:

\(\displaystyle 154\)

Explanation:

To find the arithmetic pattern, the difference between terms needs to be evaluated.

\(\displaystyle Arithmetic\ Factor=110-99=11\)

The pattern is to add 11.  

Therefore, to find the next term add 11 to the last known term.

\(\displaystyle 143 + 11 = 154\).

Learning Tools by Varsity Tutors