HSPT Quantitative : Number Manipulation*

Study concepts, example questions & explanations for HSPT Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Number Manipulation*

What is \(\displaystyle 36\) percent of \(\displaystyle 400\)?

Possible Answers:

\(\displaystyle 210\)

\(\displaystyle 144\)

\(\displaystyle 66\)

\(\displaystyle 134\)

Correct answer:

\(\displaystyle 144\)

Explanation:

Multiply \(\displaystyle 400\) by the decimal version of \(\displaystyle 36\) percent to find the answer:

\(\displaystyle 400\cdot.36=144\)

Example Question #62 : Number Manipulation*

What number is \(\displaystyle \frac{1}{2}\) of \(\displaystyle 30\) percent of \(\displaystyle 80\)?

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 24\)

\(\displaystyle 12\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 12\)

Explanation:

First, \(\displaystyle 30\) percent of \(\displaystyle 80\) is \(\displaystyle 24\):

\(\displaystyle 80\cdot.30=24\)

Then, find \(\displaystyle \frac{1}{2}\):

\(\displaystyle \frac{24}{2}=12\)

Example Question #62 : Number Manipulation*

What is the difference between \(\displaystyle 3^3\) and \(\displaystyle 3\cdot3\)?

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 72\)

\(\displaystyle 90\)

\(\displaystyle 18\)

Correct answer:

\(\displaystyle 18\)

Explanation:

First, \(\displaystyle 3^3=3\cdot3\cdot3=27\).

Then, \(\displaystyle 3\cdot3=9\).

Subtract to find the difference:

\(\displaystyle 27-9=18\)

Example Question #64 : Number Manipulation*

\(\displaystyle 24\) is \(\displaystyle 48\) percent of what number?

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 52\)

\(\displaystyle 40\)

\(\displaystyle 45\)

Correct answer:

\(\displaystyle 50\)

Explanation:

Representing the unknown number with an \(\displaystyle x\), we know that \(\displaystyle 24=.48x\). Divide both sides by \(\displaystyle .48\) to find \(\displaystyle x\):

\(\displaystyle x=\frac{24}{.48}=50\)

Example Question #65 : Number Manipulation*

What is the difference between \(\displaystyle 10\) percent of \(\displaystyle 60\) and \(\displaystyle 60\) percent of \(\displaystyle 100\)?

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 60\)

\(\displaystyle 54\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 54\)

Explanation:

First, find \(\displaystyle 10\) percent of \(\displaystyle 60\) :

\(\displaystyle 60\cdot.10=6\)

And \(\displaystyle 60\) percent of \(\displaystyle 100\):

\(\displaystyle 100\cdot.60=60\)

Then subtract to find the difference:

\(\displaystyle 60-6=54\)

 

Example Question #66 : Number Manipulation*

What is \(\displaystyle 5\) less than \(\displaystyle \frac{3}{5}\) of \(\displaystyle 85\)?

Possible Answers:

\(\displaystyle 51\)

\(\displaystyle 46\)

\(\displaystyle 47\)

\(\displaystyle 56\)

Correct answer:

\(\displaystyle 46\)

Explanation:

First, find  \(\displaystyle \frac{3}{5}\) of \(\displaystyle 85\):

\(\displaystyle \frac{85\cdot3}{5}=51\)

Then subtract \(\displaystyle 5\):

\(\displaystyle 51-5=46\)

Example Question #67 : Number Manipulation*

What number, divided by \(\displaystyle 3\), equals \(\displaystyle 60\) percent of \(\displaystyle 90\)?

Possible Answers:

\(\displaystyle 18\)

\(\displaystyle 158\)

\(\displaystyle 162\)

\(\displaystyle 54\)

Correct answer:

\(\displaystyle 162\)

Explanation:

First, find \(\displaystyle 60\) percent of \(\displaystyle 90\):

\(\displaystyle 90\cdot.60=54\)

Then, multiply by \(\displaystyle 3\) to reverse the division:

\(\displaystyle 54\cdot3=162\)

Example Question #68 : Number Manipulation*

What number is \(\displaystyle 3\) more than \(\displaystyle \frac{5}{6}\) of \(\displaystyle 180\)?

Possible Answers:

\(\displaystyle 156\)

\(\displaystyle 153\)

\(\displaystyle 150\)

\(\displaystyle 160\)

Correct answer:

\(\displaystyle 153\)

Explanation:

First, find \(\displaystyle \frac{5}{6}\) of \(\displaystyle 180\):

\(\displaystyle \frac{180\cdot5}{6}=150\)

Then, find \(\displaystyle 3\) more:

\(\displaystyle 150+3=153\)

Example Question #69 : Number Manipulation*

What number, divided by \(\displaystyle 6\), is \(\displaystyle 15\) percent of \(\displaystyle 80\)?

Possible Answers:

\(\displaystyle 180\)

\(\displaystyle 72\)

\(\displaystyle 74\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 72\)

Explanation:

First, find  \(\displaystyle 15\) percent of \(\displaystyle 80\):

\(\displaystyle 80\cdot.15=12\)

Then, multiply by \(\displaystyle 6\) to reverse the division:

\(\displaystyle 12\cdot6=72\)

Example Question #63 : Number Manipulation*

What is the average of \(\displaystyle .5\)\(\displaystyle 16\), and \(\displaystyle 4.5\)?

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 8.5\)

\(\displaystyle 12\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

Find the average by adding up all the numbers and dividing by the number of numbers:

\(\displaystyle \frac{.5+16+4.5}{3}=7\)

Learning Tools by Varsity Tutors