Intermediate Geometry : How to find the length of the hypotenuse of an acute / obtuse triangle

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

An acute scalene triangle has one side length of \(\displaystyle 4\) inches and another of \(\displaystyle 10\) inches. Find the length of the hypotenuse. 

Possible Answers:

\(\displaystyle 2\sqrt{29} in\)

\(\displaystyle 116in\)

\(\displaystyle 10in\)

\(\displaystyle 4\sqrt{29}in\)

Correct answer:

\(\displaystyle 2\sqrt{29} in\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 4^2+10^2=c^2\)

\(\displaystyle 16+100=c^2\)

\(\displaystyle c^2=116\)

\(\displaystyle c=\sqrt{116}=\sqrt{4\times 29}=\sqrt{4} \sqrt{29}=2\sqrt{29}\)

Example Question #552 : Intermediate Geometry

Obtuse_isos_tri

Find the hypotenuse of the obtuse isosceles triangle shown above. 

Possible Answers:

\(\displaystyle \sqrt{180}ft\)

\(\displaystyle 180ft\)

\(\displaystyle \sqrt{90.5}ft\)

\(\displaystyle \sqrt{180.5} ft\)

Correct answer:

\(\displaystyle \sqrt{180.5} ft\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 9.5^2+9.5^2=c^2\)

\(\displaystyle c^2=90.25+90.25=180.5\)

\(\displaystyle c=\sqrt{180.5}\)

Example Question #3 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

 A scalene triangle has one side length of \(\displaystyle 12\) yards and another side length of \(\displaystyle 8\) yards. Find the hypotenuse. 

Possible Answers:

\(\displaystyle 16\sqrt{13}yds\)

\(\displaystyle 208yds\)

\(\displaystyle 4\sqrt{13}yds\)

\(\displaystyle \sqrt{144}yds\)

Correct answer:

\(\displaystyle 4\sqrt{13}yds\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 12^2+8^2=c^2\)

\(\displaystyle c^2=144+64=208\)

\(\displaystyle c=\sqrt{208}=\sqrt{16\times 13}=\sqrt{16}\sqrt{13}=4\sqrt{13}\)

Example Question #4 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

Isos_obtus_tri_dos

Find the hypotenuse of the obtuse isosceles triangle shown above. 

Possible Answers:

\(\displaystyle \sqrt{11}\sqrt{2}m\)

\(\displaystyle \sqrt{11}m\)

\(\displaystyle 11\sqrt{2}m\)

\(\displaystyle \sqrt{121}m\)

Correct answer:

\(\displaystyle 11\sqrt{2}m\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 11^2+11^2=c^2\)

\(\displaystyle c^2=121+121=242\)

\(\displaystyle c=\sqrt{242}=\sqrt{121\times 2}=\sqrt{121}\sqrt{2}=11\sqrt{2}\)

Example Question #1 : How To Find The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

An isosceles right triangle has two sides with a length of \(\displaystyle 20\) inches each. Find the length of the hypotenuse. 

Possible Answers:

\(\displaystyle 40in\)

\(\displaystyle \sqrt{20}in\)

\(\displaystyle 25in\)

\(\displaystyle 20\sqrt{2}in\)

Correct answer:

\(\displaystyle 20\sqrt{2}in\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 20^2+20^2=c^2\)

\(\displaystyle 400+400=c^2\)

\(\displaystyle c^2=800\)

\(\displaystyle c=\sqrt{800}=\sqrt{400\times 2}=\sqrt{400}\sqrt{2}=20\sqrt{2}\)

Example Question #112 : Triangles

A scalene right triangle has one side length of \(\displaystyle 5\) inches and another side length of \(\displaystyle 7\) inches. Find the length of the hypotenuse. 

Possible Answers:

 \(\displaystyle 74in\)

\(\displaystyle 49in\)

\(\displaystyle \sqrt{74} in\)

\(\displaystyle \sqrt{49}in\)

Correct answer:

\(\displaystyle \sqrt{74} in\)

Explanation:

To find the length of the hypotenuse, apply the Pythagorean Theorem: \(\displaystyle a^2+b^2=c^2\), where \(\displaystyle c=\) the length of the hypotenuse. 

Thus, the solution is:

\(\displaystyle 5^2+7^2=c^2\)

\(\displaystyle c^2=25+49=74\)

\(\displaystyle c=\sqrt{74}\)

Learning Tools by Varsity Tutors