Intermediate Geometry : How to find the perimeter of a rhombus

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Rhombuses

A rhombus has an area of \displaystyle 108 square units, an altitude of \displaystyle 12. Find the perimeter of the rhombus. 

Possible Answers:

\displaystyle 72

\displaystyle 32

\displaystyle 46

\displaystyle 36

\displaystyle 48

Correct answer:

\displaystyle 36

Explanation:

In order to solve this problem, use the given information to work backwards to find a side length of the rhombus: 

\displaystyle A=(base\times altitude)


\displaystyle 108=(base\times 12)


\displaystyle base=108\div12=9

Then apply the perimeter formula: 

\displaystyle P=4S, where \displaystyle S is equal to the length of one side of the rhombus. 

The solution is:

\displaystyle P=4\times9=36

Example Question #21 : Rhombuses

A rhombus has an area of \displaystyle 56 square units and an altitude of \displaystyle 7. Find the perimeter of the rhombus. 

Possible Answers:

\displaystyle 28

\displaystyle 64

\displaystyle 32

\displaystyle 42

\displaystyle 36

Correct answer:

\displaystyle 32

Explanation:

In order to solve this problem, use the given information to work backwards to find a side length of the rhombus: 

\displaystyle A=(base\times altitude)


\displaystyle 56=(base\times 7)

\displaystyle base=\frac{56}{7}=8


Then apply the perimeter formula: 

\displaystyle p=4S, where \displaystyle s= the length of one side of the rhombus.

\displaystyle p=4(8)=32

Example Question #21 : Rhombuses

Given that a rhombus has an area of \displaystyle 240 square units and an altitude of \displaystyle 16, find the perimeter of the rhombus. 

Possible Answers:

\displaystyle 40

\displaystyle 66

\displaystyle 60

\displaystyle 64

\displaystyle 160

Correct answer:

\displaystyle 60

Explanation:

In order to solve this problem, use the given information to work backwards to find a side length of the rhombus: 

\displaystyle A=(base\times altitude)

\displaystyle 240=(base\times 16)

\displaystyle base=\frac{240}{16}=15

Then apply the formula: \displaystyle p=4S, where \displaystyle S= 15

\displaystyle p=4(15)=60

Example Question #11 : How To Find The Perimeter Of A Rhombus

A rhombus has an area of \displaystyle 9 square units and an altitude of \displaystyle 1.8, find the perimeter of the rhombus. 

Possible Answers:

\displaystyle 10

\displaystyle 25

\displaystyle 20

\displaystyle 28.5

\displaystyle 9

Correct answer:

\displaystyle 20

Explanation:

In order to solve this problem, use the given information to work backwards to find a side length of the rhombus: 

\displaystyle A=(base\times altitude)


\displaystyle 9=(base\times 1.8)

\displaystyle base=\frac{9}{1.8}=5
Then apply the formula: \displaystyle P=4S, where \displaystyle S=5

\displaystyle P=4\times5=20

Example Question #15 : How To Find The Perimeter Of A Rhombus

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 14 and \displaystyle 16.

Possible Answers:

\displaystyle 44.11

\displaystyle 45.89

\displaystyle 42.52

\displaystyle 43.07

Correct answer:

\displaystyle 42.52

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{14}{2}=7

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{16}{2}=8

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 7^2+8^2=\text{side length}^2

\displaystyle \text{side length}^2=49+64=113

\displaystyle \text{side length}=\sqrt{113}

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4\sqrt{113}

Solve and round to two decimal places.

 \displaystyle \text{Perimeter}=42.52

Example Question #16 : How To Find The Perimeter Of A Rhombus

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 8 and \displaystyle 12

Possible Answers:

\displaystyle 21.08

\displaystyle 32.66

\displaystyle 29.57

\displaystyle 28.84

Correct answer:

\displaystyle 28.84

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{8}{2}=4

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{12}{2}=6

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 4^2+6^2=\text{side length}^2

\displaystyle \text{side length}^2=16+36=52

\displaystyle \text{side length}=2\sqrt{13}

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4(2\sqrt{13})

Solve and round to two decimal places.

\displaystyle \text{Perimeter}=28.84

Example Question #17 : How To Find The Perimeter Of A Rhombus

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 14 and \displaystyle 18.

Possible Answers:

\displaystyle 42.42

\displaystyle 42.28

\displaystyle 47.05

\displaystyle 45.61

Correct answer:

\displaystyle 45.61

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{14}{2}=7

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{18}{2}=9

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 7^2+9^2=\text{side length}^2

\displaystyle \text{side length}^2=49+81=130

\displaystyle \text{side length}=\sqrt{130}

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4(\sqrt{130})

Solve and round to two decimal places.

\displaystyle \text{Perimeter}=45.61

Example Question #12 : How To Find The Perimeter Of A Rhombus

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 12 and \displaystyle 16.

Possible Answers:

\displaystyle 34.77

\displaystyle 40.68

\displaystyle 40.00

Cannot be determined

Correct answer:

\displaystyle 40.00

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{12}{2}=6

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{16}{2}=8

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 6^2+8^2=\text{side length}^2

\displaystyle \text{side length}^2=36+64=100

\displaystyle \text{side length}=10

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4(10)

Solve.

\displaystyle \text{Perimeter}=40

Example Question #12 : How To Find The Perimeter Of A Rhombus

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 24 and \displaystyle 26.

Possible Answers:

\displaystyle 73.84

\displaystyle 65.29

\displaystyle 70.77

\displaystyle 71.18

Correct answer:

\displaystyle 70.77

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{24}{2}=12

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{26}{2}=13

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 12^2+13^2=\text{side length}^2

\displaystyle \text{side length}^2=144+169=313

\displaystyle \text{side length}=\sqrt{313}

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4(\sqrt{313})

Solve and round to two decimal places.

\displaystyle \text{Perimeter}=70.77

Example Question #31 : Rhombuses

Find the perimeter of a rhombus if it has diagonals of the following lengths: \displaystyle 28 and \displaystyle 36.

Possible Answers:

\displaystyle 88.30

\displaystyle 89.51

\displaystyle 93.08

\displaystyle 91.21

Correct answer:

\displaystyle 91.21

Explanation:

Recall that the diagonals of a rhombus bisect each other and are perpendicular to one another.

13

In order to find the length of the side, we can use Pythagorean's theorem. The lengths of half of the diagonals are the legs, and the length of the side of the rhombus is the hypotenuse.

First, find the lengths of half of the diagonals.

\displaystyle \frac{\text{Diagonal 1}}{2}=\frac{28}{2}=14

\displaystyle \frac{\text{Diagonal 2}}{2}=\frac{36}{2}=18

Next, substitute these half diagonals as the legs in a right triangle using the Pythagorean theorem.

\displaystyle 14^2+18^2=\text{side length}^2

\displaystyle \text{side length}^2=196+324=520

\displaystyle \text{side length}=2\sqrt{130}

Since the sides of a rhombus all have the same length, multiply the side length by \displaystyle 4 in order to find the perimeter.

\displaystyle \text{Perimeter}=4(\text{side length})

\displaystyle \text{Perimeter}=4(2\sqrt{130})

Solve and round to two decimal places.

\displaystyle \text{Perimeter}=91.21

Learning Tools by Varsity Tutors