Intermediate Geometry : Quadrilaterals

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Parallelograms

Find the area of a parallelogram.

5

Possible Answers:

\(\displaystyle 109.92\)

\(\displaystyle 112.23\)

\(\displaystyle 120.54\)

\(\displaystyle 107.33\)

Correct answer:

\(\displaystyle 107.33\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{9^2-6^2}=\sqrt{81-36}=\sqrt{45}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=16\times\sqrt{45}=107.33\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #92 : Parallelograms

Find the area of the parallelogram.

7

Possible Answers:

\(\displaystyle 42\)

\(\displaystyle 40\)

\(\displaystyle 39\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 40\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{5^2-3^2}=\sqrt{25-9}=4\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=10\times4=40\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #261 : Quadrilaterals

Find the area of the parallelogram.

6

Possible Answers:

\(\displaystyle 13.32\)

\(\displaystyle 14.14\)

\(\displaystyle 9.85\)

\(\displaystyle 15.08\)

Correct answer:

\(\displaystyle 14.14\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{3^2-1^2}=\sqrt{9-1}=\sqrt{8}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=5\times\sqrt{8}=14.14\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #91 : Parallelograms

Find the area of the parallelogram.

8

Possible Answers:

\(\displaystyle 298.50\)

\(\displaystyle 287.56\)

\(\displaystyle 291.11\)

\(\displaystyle 295.16\)

Correct answer:

\(\displaystyle 295.16\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{18^2-12^2}=\sqrt{324-144}=\sqrt{180}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=22\times\sqrt{180}=295.16\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #92 : Parallelograms

Find the area of the parallelogram.

9

Possible Answers:

\(\displaystyle 490.57\)

\(\displaystyle 455.96\)

\(\displaystyle 482.12\)

\(\displaystyle 402.19\)

Correct answer:

\(\displaystyle 455.96\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{20^2-13^2}=\sqrt{400-169}=\sqrt{231}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=30\times\sqrt{231}=455.96\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #51 : How To Find The Area Of A Parallelogram

Find the area of the parallelogram.

10

Possible Answers:

\(\displaystyle 90.21\)

\(\displaystyle 88.53\)

\(\displaystyle 109.44\)

\(\displaystyle 96.75\)

Correct answer:

\(\displaystyle 96.75\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{9^2-4^2}=\sqrt{81-16}=\sqrt{65}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=12\times\sqrt{65}=96.75\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #91 : Parallelograms

Find the area of the parallelogram.

11

Possible Answers:

\(\displaystyle 305.68\)

\(\displaystyle 298.72\)

\(\displaystyle 234.07\)

\(\displaystyle 299.14\)

Correct answer:

\(\displaystyle 298.72\)

Explanation:

13

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area}=\text{base}\times\text{height}\)

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\(\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2\)

\(\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2\)

\(\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}\)

Plug in the given values to find the length of the height.

\(\displaystyle \text{height}=\sqrt{14^2-8^2}=\sqrt{196-64}=\sqrt{132}\)

Now, use the height to find the area of the parallelogram.

\(\displaystyle \text{Area}=26\times\sqrt{132}=298.72\)

Remember to round to \(\displaystyle 2\) places after the decimal.

Example Question #91 : Parallelograms

Find the area of the parallelogram.

Int_geo_number_7

 

Note that the figure is not drawn to scale.

Possible Answers:

112

56

42

100

84

Correct answer:

84

Explanation:

The area of a parallelogram can be found using the following equation:

\(\displaystyle A=bh\)

In this problem, the height is 6 (not 8). Substitute the known variables and solve.

\(\displaystyle A=bh\)

\(\displaystyle A=14\times 6\)

\(\displaystyle A=84\)

Example Question #433 : Intermediate Geometry

If the height of the parallelogram is half of the length of the rectangle, then find the area of the shaded region in the figure.

1

Possible Answers:

\(\displaystyle 102\)

\(\displaystyle 56\)

\(\displaystyle 65\)

\(\displaystyle 72\)

Correct answer:

\(\displaystyle 72\)

Explanation:

13

In order to find the area of the shaded region, we must first find the areas of the rectangle and parallelogram.

Recall how to find the area of a rectangle:

\(\displaystyle \text{Area of Rectangle}=\text{length}\times\text{width}\)

Substitute in the given length and height to find the area of the rectangle.

\(\displaystyle \text{Area of Rectangle}=8 \times 14\)

\(\displaystyle \text{Area of Rectangle}=112\)

Next, find the area of the parallelogram.

Recall how to find the area of a parallelogram:

\(\displaystyle \text{Area of Parallelogram}=\text{base}\times\text{height}\)

We need to find the height of the parallelogram. From the question, we know the following relationship:

\(\displaystyle \text{height}=\frac{\text{length}}{2}\)

Substitute in the length of the rectangle to find the height of the parallelogram.

\(\displaystyle \text{height}=\frac{8}{2}\)

\(\displaystyle \text{height}=4\)

Now, substitute in the height and the given length of the base to find the area of the parallelogram.

\(\displaystyle \text{Area of Parallelogram}=10 \times 4\)

\(\displaystyle \text{Area of Parallelogram}=40\)

Now, we are ready to find the area of the shaded region by subtracting the area of the parallelogram from the area of the rectangle.

\(\displaystyle \text{Area of Shaded Region}=\text{Area of Rectangle}-\text{Area of Parallelogram}\)

\(\displaystyle \text{Area of Shaded Region}=112-40\) \(\displaystyle =72\)

 

Example Question #1 : How To Find If Parallelograms Are Similar

A parallelogram has adjacent sides with the lengths of \(\displaystyle 6\) and \(\displaystyle 9\). Find a pair of possible adjacent side lengths for a similar parallelogram. 

Possible Answers:

\(\displaystyle 12\) and \(\displaystyle 20\)

\(\displaystyle 12\) and \(\displaystyle 18\)

\(\displaystyle 1\) and \(\displaystyle 5\)

\(\displaystyle 3\) and \(\displaystyle 6\)

Correct answer:

\(\displaystyle 12\) and \(\displaystyle 18\)

Explanation:

Since the two parallelogram are similar, each of the corresponding sides must have the same ratio. 

The solution is:

\(\displaystyle 6:9=(6\div3):(9\div 3)=2:3\)

\(\displaystyle 12:18=2:3\), (divide both numbers by the common divisor of \(\displaystyle 6\)). 

\(\displaystyle 6:9=12:18\)

Learning Tools by Varsity Tutors