Intermediate Geometry : Solid Geometry

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #17 : How To Find The Volume Of A Cylinder

Find the volume of a cylinder that has a radius of \displaystyle 18 and a height of \displaystyle \frac{1}{4}.

Possible Answers:

\displaystyle 324\pi

\displaystyle 81\pi

\displaystyle 54\pi

\displaystyle 162\pi

Correct answer:

\displaystyle 81\pi

Explanation:

Recall how to find the volume of a cylinder:

\displaystyle \text{Volume of Cylinder}=\text{Area of base}\times\text{height}

Since the base of a cylinder is a circle, we can write the following equation:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Substitute in the given values to find the volume.

\displaystyle \text{Volume of Cylinder}=\pi\times 18^2\times \frac{1}{4}

Solve.

\displaystyle \text{Volume of Cylinder}=81\pi

Example Question #31 : Cylinders

Find the volume of a cylinder that has a radius of \displaystyle \frac{1}{5} and a height of \displaystyle \frac{2}{3}.

Possible Answers:

\displaystyle \frac{1}{25}\pi

\displaystyle \frac{1}{75}\pi

\displaystyle \frac{4}{75}\pi

\displaystyle \frac{2}{75}\pi

Correct answer:

\displaystyle \frac{2}{75}\pi

Explanation:

Recall how to find the volume of a cylinder:

\displaystyle \text{Volume of Cylinder}=\text{Area of base}\times\text{height}

Since the base of a cylinder is a circle, we can write the following equation:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Substitute in the given values to find the volume.

\displaystyle \text{Volume of Cylinder}=\pi\times (\frac{1}{5})^2\times \frac{2}{3}

Solve.

\displaystyle \text{Volume of Cylinder}=\frac{2}{75}\pi

Example Question #21 : How To Find The Volume Of A Cylinder

A cylinder has a smaller cylinder cut out of its core as shown by the figure below.

 

1

Find the volume of the figure.

Possible Answers:

\displaystyle 1607.55

\displaystyle 1425.32

\displaystyle 1507.96

\displaystyle 1236.98

Correct answer:

\displaystyle 1507.96

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 7^2 \times 12=588\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 3^2 \times 12=108\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=588\pi-108\pi=480\pi=1507.96

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #21 : How To Find The Volume Of A Cylinder

Find the volume of the figure.

2

Possible Answers:

\displaystyle 3166.73

\displaystyle 3020.18

\displaystyle 3369.61

\displaystyle 3209.58

Correct answer:

\displaystyle 3166.73

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 10^2 \times 12=1200\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 4^2 \times 12=192\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=1200\pi-192\pi=1008\pi=3166.73

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #21 : How To Find The Volume Of A Cylinder

Find the volume of the figure.

3

Possible Answers:

\displaystyle 30005.82

\displaystyle 29907.96

\displaystyle 28800.64

\displaystyle 29632.23

Correct answer:

\displaystyle 29907.96

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 21^2 \times 35=15435\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 13^2 \times 35=5915\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=15435\pi-5915\pi=9520\pi=29907.96

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #23 : How To Find The Volume Of A Cylinder

Find the volume of the figure.

4

Possible Answers:

\displaystyle 26551.22

\displaystyle 21635.08

\displaystyle 27159.63

\displaystyle 26389.38

Correct answer:

\displaystyle 26389.38

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 20^2 \times 25=10000\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 8^2 \times 25=1600\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=10000\pi-1600\pi=8400\pi=26389.38

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #21 : How To Find The Volume Of A Cylinder

Find the volume of the figure.

5

Possible Answers:

\displaystyle 15966.32

\displaystyle 14844.03

\displaystyle 15633.08

\displaystyle 13222.07

Correct answer:

\displaystyle 14844.03

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 15^2 \times 25=5625\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 6^2 \times 25=900\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=5625\pi-900\pi=4725\pi=14844.03

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #111 : Solid Geometry

The figure below represents a cylinder with a smaller cylinder removed from its middle.

 

Find the volume of the figure.

6

Possible Answers:

\displaystyle 1896.77

\displaystyle 1850.36

\displaystyle 1865.32

\displaystyle 1884.96

Correct answer:

\displaystyle 1884.96

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 8^2 \times 10=640\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 2^2 \times 10=40\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=640\pi-40\pi=600\pi=1884.96

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #851 : Sat Mathematics

Find the volume of the figure.

7

Possible Answers:

\displaystyle 2036.33

\displaystyle 2073.45

\displaystyle 2158.25

\displaystyle 2200.94

Correct answer:

\displaystyle 2073.45

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 8^2 \times 12=768\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 3^2 \times 12=108\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=768\pi-108\pi=660\pi=2073.45

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #113 : Solid Geometry

Find the volume of the figure.

8

Possible Answers:

\displaystyle 1006.37

\displaystyle 1225.22

\displaystyle 1109.87

\displaystyle 1206.37

Correct answer:

\displaystyle 1206.37

Explanation:

13

In order to find the volume of the figure, we will first need to find the volume of both cylinders.

Recall how to find the volume of the cylinder:

\displaystyle \text{Volume of Cylinder}=\pi\times\text{radius}^2\times\text{height}

Now, use the given radius and height to find the volume of the larger cylinder.

\displaystyle \text{Volume of Larger Cylinder}=\pi\times 6^2 \times 12=432\pi

Next, use the given radius and height to find the volume of the smaller cylinder.

\displaystyle \text{Volume of Smaller Cylinder}=\pi\times 2^2 \times 12=48\pi

Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.

\displaystyle \text{Volume of Figure}=432\pi-48\pi=384\pi=1206.37

Make sure to round to \displaystyle 2 places after the decimal.

Learning Tools by Varsity Tutors