Introduction to Analysis : Intro Analysis

Study concepts, example questions & explanations for Introduction to Analysis

varsity tutors app store varsity tutors android store

All Introduction to Analysis Resources

12 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Intro Analysis

Identify the following property.

On the space \displaystyle \mathbb{R}\times \mathbb{R} where \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} only one of the following statements holds true \displaystyle a< b\displaystyle b< a, or \displaystyle a=b.

Possible Answers:

Distributive Law

Existence of Multiplicative Identity

Trichotomy Property

Multiplicative Property

Transitive Property

Correct answer:

Trichotomy Property

Explanation:

The real number system, \displaystyle \mathbb{R}\times \mathbb{R} contains order axioms that show relations and properties of the system that add completeness to the ordered field algebraic laws.

The properties are as follows.

Trichotomy Property:

Given \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} only one of the following statements holds true \displaystyle a< b\displaystyle b< a, or \displaystyle a=b.

Transitive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle b< c then this implies \displaystyle a< c.

Additive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c\ \epsilon\ \mathbb{R} then this implies \displaystyle a+b< b+c.

Multiplicative Properties:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c>0 then this implies \displaystyle ac< bc and  \displaystyle a< b and \displaystyle c< 0 then this implies \displaystyle bc< ac.

 

Therefore looking at the options the Trichotomy Property identifies the property in this particular question.

 

Example Question #2 : Intro Analysis

Identify the following property.

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle b< c then this implies \displaystyle a< c.

Possible Answers:

Transitive Property

Distribution Laws

Additive Property

Trichotomy Property

Multiplicative Properties

Correct answer:

Transitive Property

Explanation:

The real number system, \displaystyle \mathbb{R}\times \mathbb{R} contains order axioms that show relations and properties of the system that add completeness to the ordered field algebraic laws.

The properties are as follows.

Trichotomy Property:

Given \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} only one of the following statements holds true \displaystyle a< b\displaystyle b< a, or \displaystyle a=b.

Transitive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle b< c then this implies \displaystyle a< c.

Additive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c\ \epsilon\ \mathbb{R} then this implies \displaystyle a+b< b+c.

Multiplicative Properties:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c>0 then this implies \displaystyle ac< bc and  \displaystyle a< b and \displaystyle c< 0 then this implies \displaystyle bc< ac.

 

Therefore looking at the options the Transitive Property identifies the property in this particular question.

Example Question #3 : The Real Number System

Identify the following property.

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c\ \epsilon\ \mathbb{R} then this implies \displaystyle a+b< b+c.

Possible Answers:

Transitive Property

Distribution Laws

Additive Property

Trichotomy Property

Multiplicative Properties

Correct answer:

Additive Property

Explanation:

The real number system, \displaystyle \mathbb{R}\times \mathbb{R} contains order axioms that show relations and properties of the system that add completeness to the ordered field algebraic laws.

The properties are as follows.

Trichotomy Property:

Given \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} only one of the following statements holds true \displaystyle a< b\displaystyle b< a, or \displaystyle a=b.

Transitive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle b< c then this implies \displaystyle a< c.

Additive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c\ \epsilon\ \mathbb{R} then this implies \displaystyle a+b< b+c.

Multiplicative Properties:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c>0 then this implies \displaystyle ac< bc and  \displaystyle a< b and \displaystyle c< 0 then this implies \displaystyle bc< ac.

 

Therefore looking at the options the Additive Property identifies the property in this particular question.

Example Question #4 : The Real Number System

Identify the following property.

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c>0 then this implies \displaystyle ac< bc and  \displaystyle a< b and \displaystyle c< 0 then this implies \displaystyle bc< ac.

Possible Answers:

Additive Property

Distribution Laws

Transitive Property

Trichotomy Property

Multiplicative Properties

Correct answer:

Multiplicative Properties

Explanation:

The real number system, \displaystyle \mathbb{R}\times \mathbb{R} contains order axioms that show relations and properties of the system that add completeness to the ordered field algebraic laws.

The properties are as follows.

Trichotomy Property:

Given \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} only one of the following statements holds true \displaystyle a< b\displaystyle b< a, or \displaystyle a=b.

Transitive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle b< c then this implies \displaystyle a< c.

Additive Property:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c\ \epsilon\ \mathbb{R} then this implies \displaystyle a+b< b+c.

Multiplicative Properties:

For \displaystyle a\displaystyle b, and \displaystyle c\ \epsilon\ \mathbb{R} where \displaystyle a< b and \displaystyle c>0 then this implies \displaystyle ac< bc and  \displaystyle a< b and \displaystyle c< 0 then this implies \displaystyle bc< ac.

 

Therefore looking at the options the Multiplicative Properties identifies the property in this particular question.

Example Question #1 : Intro Analysis

Determine whether the following statement is true or false:

If \displaystyle A is a nonempty subset of \displaystyle \mathbb{N}, then \displaystyle A has a finite infimum and it is an element of \displaystyle A.

Possible Answers:

True

False

Correct answer:

True

Explanation:

According to the Well-Ordered Principal this statement is true. The following proof illuminate its truth.

Suppose \displaystyle A\subseteq \mathbb{N} is nonempty. From there, it is known that \displaystyle -A is bounded above, by \displaystyle -1.

Therefore, by the Completeness Axiom the supremum of \displaystyle -A exists.

Furthermore, if \displaystyle A\subset \mathbb{Z} has a supremum, then \displaystyle \text{sup}A\ \epsilon\ A, thus in this particular case \displaystyle \text{sup}(-A)\ \epsilon\ -A.

Thus by the Reflection Principal,

\displaystyle \text{inf}A=-\text{sup}(-A) 

exists and 

\displaystyle \text{inf}A\ \epsilon\ -(-A)=A.

Therefore proving the statement in question true.

Example Question #1 : Sequences In Real Numbers (R)

What term does the following define.

A sequence of sets \displaystyle \begin{Bmatrix} I_n \end{Bmatrix}_{n\ \epsilon\ \mathbb{N}} is __________ if and only if \displaystyle I_1\supseteq I_2\supseteq ....

Possible Answers:

Unbounded

Decreasing

Increasing

Bounded

Nested

Correct answer:

Nested

Explanation:

This statement:

A sequence of sets \displaystyle \begin{Bmatrix} I_n \end{Bmatrix}_{n\ \epsilon\ \mathbb{N}} is __________ if and only if \displaystyle I_1\supseteq I_2\supseteq ...

is the definition of nested.

This means that the sequence \displaystyle I_n for all \displaystyle n elements, for which \displaystyle n belongs to the natural numbers, is considered a nested set if and only if the subsequent sets are subsets of it. 

Other theorems in intro analysis build off this understanding.

Example Question #1 : Derivative & Differentiability Theorems

Determine whether the following statement is true or false:

Let \displaystyle a\displaystyle b\displaystyle c, and \displaystyle d\ \epsilon\ \mathbb{R}. If \displaystyle a< b and \displaystyle c< d< 0 then \displaystyle ac< bd.

Possible Answers:

False

True

Correct answer:

False

Explanation:

Determine this statement is false by showing a contradiction when actual values are used.

Let 

\displaystyle a=1, b=2, c=-3, d=-2

First make sure the inequalities hold true.

\displaystyle \\a< b \\1< 2 

and

\displaystyle \\c< d< 0 \\-3< -2< 0

Now find the products.

\displaystyle \\ac< bd \\(1)(-3)< (2)(-2) \\-3\nless -4

Therefore, the statement is false.

Example Question #1 : Integrability Of Real Numbers (R)

What conditions are necessary to prove that the upper and lower integrals of a bounded function exist?

Possible Answers:

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{Z}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R} be bounded

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a>b,  and \displaystyle f:[a,b]\rightarrow \mathbb{Z}

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{Z} be bounded

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R} be bounded

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a>b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R}

Correct answer:

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R} be bounded

Explanation:

Using the definition for Riemann sums to define the upper and lower integrals of a function answers the question.

According the the Riemann sum where \displaystyle U(f,P) represents the upper integral and \displaystyle L(f,P) the following are defined:

1. The upper integral of \displaystyle f on \displaystyle [a,b] is

\displaystyle (U)\int_a^bf(x)dx:=\text{inf}\begin{Bmatrix} U(f,p)) \end{Bmatrix} where \displaystyle P is a partition of \displaystyle [a,b].

2. The lower integral of \displaystyle f on \displaystyle [a,b] is

\displaystyle (L)\int_a^bf(x)dx:=\text{sup}\begin{Bmatrix} L(f,p)) \end{Bmatrix}where \displaystyle P is a partition of \displaystyle [a,b].

3. If 1 and 2 are the same then the integral is said to be

\displaystyle \int_a^bf(x):=(U)\int_a^bf(x)dx=(L)\int_a^bf(x)dx

if and only if \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R} be bounded.

Therefore the necessary condition for the proving the upper and lower integrals of a bounded function exists is if and only if \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R}\displaystyle a< b,  and \displaystyle f:[a,b]\rightarrow \mathbb{R} be bounded.

Example Question #1 : Intro Analysis

What term has the following definition.

\displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} and \displaystyle a< b. Over the interval \displaystyle [a,b] is a set of points \displaystyle P=\begin{Bmatrix} x_0,x_1,...,x_n \end{Bmatrix} such that

\displaystyle a=x_0< x_1< ...< x_n=b

Possible Answers:

Refinement of a partition

Partition

Norm

Lower Riemann sum

Upper Riemann sum

Correct answer:

Partition

Explanation:

By definition 

If \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} and \displaystyle a< b.

A partition over the interval \displaystyle [a,b] is a set of points \displaystyle P=\begin{Bmatrix} x_0,x_1,...,x_n \end{Bmatrix} such that

\displaystyle a=x_0< x_1< ...< x_n=b.

Therefore, the term that describes this statement is partition.

Example Question #3 : Integrability Of Real Numbers (R)

What term has the following definition.

The __________ of a partition  \displaystyle P=\begin{Bmatrix} x_0,x_1,...,x_n \end{Bmatrix} is

\displaystyle ||P||=\max_{1\leq j\leq n}|x_j-x_{j-1}|

Possible Answers:

Norm

Lower Riemann sum

Upper Riemann Sum

Refinement of a partition

Partition

Correct answer:

Norm

Explanation:

By definition 

If \displaystyle a\displaystyle b\ \epsilon\ \mathbb{R} and \displaystyle a< b.

A partition over the interval \displaystyle [a,b] is a set of points \displaystyle P=\begin{Bmatrix} x_0,x_1,...,x_n \end{Bmatrix} such that

\displaystyle a=x_0< x_1< ...< x_n=b.

Furthermore, 

The norm of the partition 

\displaystyle P=\begin{Bmatrix} x_0,x_1,...,x_n \end{Bmatrix} is

\displaystyle ||P||=\max_{1\leq j\leq n}|x_j-x_{j-1}|

Therefore, the term that describes this statement is norm.

All Introduction to Analysis Resources

12 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors