ISEE Lower Level Quantitative : How to find a triangle on a coordinate plane

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle_1

Find the area of the above triangle--given that it has a base of \(\displaystyle 8\) and a height of \(\displaystyle 6\)

Possible Answers:

\(\displaystyle 12\) square units

\(\displaystyle 48\) square units

\(\displaystyle 24\) square units

\(\displaystyle 14\) square units

Correct answer:

\(\displaystyle 24\) square units

Explanation:

To find the area of the right triangle apply the formula: \(\displaystyle A=\frac{base\times height}{2}\)

Thus, the solution is: 

\(\displaystyle A=\frac{6\times 8}{2}=\frac{48}{2}=24\)

Example Question #2 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle2

The above triangle has a base of \(\displaystyle 6\) and a height of \(\displaystyle 12\). Find the area. 

Possible Answers:

\(\displaystyle 38\) square units

\(\displaystyle 72\) square units

\(\displaystyle 36\) square units

\(\displaystyle 30\) square units

Correct answer:

\(\displaystyle 36\) square units

Explanation:

To find the area of this right triangle apply the formula: \(\displaystyle A=\frac{base \times height}{2}\)

Thus, the solution is:

\(\displaystyle A=\frac{12\times 6}{2}=\frac{72}{2}=36\)

Example Question #3 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle2

The above triangle has a base of \(\displaystyle 6\) and a height of \(\displaystyle 12\). Find the length longest side (the hypotenuse). 

Possible Answers:

\(\displaystyle 180\)

\(\displaystyle \sqrt{180}\)

\(\displaystyle \sqrt{144}\)

\(\displaystyle 144\)

Correct answer:

\(\displaystyle \sqrt{180}\)

Explanation:

In order to find the length of the longest side of the triangle (hypotenuse), apply the formula:

\(\displaystyle a^2 +b^2=c^2\), where \(\displaystyle a\) and \(\displaystyle b\) are equal to \(\displaystyle 6\) and \(\displaystyle 8\), respectively. And, \(\displaystyle c=\) the hypotenuse.

Thus, the solution is:

\(\displaystyle 6^2 +12^2=c^2\)
\(\displaystyle 36+144=c^2\)
\(\displaystyle 180=c^2\)
\(\displaystyle c=\sqrt{180}\)

Example Question #4 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle3

The triangle shown above has a base of \(\displaystyle 8\) and height of \(\displaystyle 13\). Find the area of the triangle. 

Possible Answers:

\(\displaystyle 21\) square units

\(\displaystyle 54\) square units

\(\displaystyle 52\) square units

\(\displaystyle 104\) square units

Correct answer:

\(\displaystyle 52\) square units

Explanation:

To find the area of this triangle apply the formula: \(\displaystyle A=\frac{base\times height}{2}\)

Thus, the solution is:

\(\displaystyle A=\frac{13\times 8}{2}=\frac{104}{2}=52\)

Example Question #4 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle3

At which of the following coordinate points does this triangle intersect with the \(\displaystyle y\)-axis?

Possible Answers:

\(\displaystyle (-8,0)\)

\(\displaystyle (0,-7)\)

\(\displaystyle (-7,0)\)

\(\displaystyle (0,7)\)

Correct answer:

\(\displaystyle (0,-7)\)

Explanation:

This triangle only intersects with the vertical \(\displaystyle y\)-axis at one coordinate point: \(\displaystyle (0,-7)\). Keep in mind that the \(\displaystyle 0\) represents the \(\displaystyle x\) value of the coordinate and \(\displaystyle -7\) represents the \(\displaystyle y\) value of the coordinate point. 

Example Question #6 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle3

The triangle shown above has a base of \(\displaystyle 8\) and height of \(\displaystyle 13\). Find the perimeter of the triangle. 

Possible Answers:

\(\displaystyle 36\)

\(\displaystyle 21+\sqrt{233}\)

\(\displaystyle \sqrt{233}\)

\(\displaystyle 21+\sqrt{33}\)

Correct answer:

\(\displaystyle 21+\sqrt{233}\)

Explanation:

The perimeter of this triangle can be found using the formula: \(\displaystyle P=height + base +\sqrt{height^2 +base^2}\)

Thus, the solution is:

\(\displaystyle P=13+8+\sqrt{8^2+13^2}\)
\(\displaystyle P=21 +\sqrt{64+169}\)
\(\displaystyle P=21+\sqrt{233}\)

Example Question #2 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle_4

The above triangle has a height of \(\displaystyle 3\) and a base with length \(\displaystyle 4\).  Find the area of the triangle. 

Possible Answers:

\(\displaystyle 12\) square units

\(\displaystyle 7\) square units

\(\displaystyle 8\) square units

\(\displaystyle 6\) square units

Correct answer:

\(\displaystyle 6\) square units

Explanation:

In order to find the area of this triangle apply the formula: \(\displaystyle A=\frac{base \times height}{2}= \frac{4\times 3}{2}=\frac{12}{2}=6\)

Example Question #8 : How To Find A Triangle On A Coordinate Plane

Vt_custom_xy_xytriangle3

The triangle shown above has a base of \(\displaystyle 8\) and height of \(\displaystyle 13\). Find the length of the longest side of the triangle (the hypotenuse). 

Possible Answers:

\(\displaystyle \sqrt{233}\)

\(\displaystyle 233\)

\(\displaystyle \sqrt{64}\)

\(\displaystyle \sqrt{169}\)

\(\displaystyle 169\)

Correct answer:

\(\displaystyle \sqrt{233}\)

Explanation:

In order to find the length of the longest side of the triangle (hypotenuse), apply the formula:

\(\displaystyle a^2 +b^2=c^2\), where \(\displaystyle a\) and \(\displaystyle b\) are equal to \(\displaystyle 13\) and \(\displaystyle 8\), respectively. And, \(\displaystyle c=\) the hypotenuse. 

Thus, the solution is:

\(\displaystyle 8^2+13^2=c^2\)
\(\displaystyle 64+169=c^2\)
\(\displaystyle c^2=233\)
\(\displaystyle c=\sqrt{233}\)

Example Question #141 : Coordinate Geometry

Vt_custom_xy_xytriangle_4

The above triangle has a height of \(\displaystyle 3\) and a base with length \(\displaystyle 4\). Find the hypotenuse (the longest side). 

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 9\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 5\)

Explanation:

In order to find the length of the longest side of the triangle (hypotenuse), apply the formula:

\(\displaystyle a^2 +b^2=c^2\), where \(\displaystyle a\) and \(\displaystyle b\) are equal to \(\displaystyle 3\) and \(\displaystyle 4\), respectively. And, \(\displaystyle c=\) the hypotenuse. 

Thus, the solution is:

\(\displaystyle 3^2+4^2=c^2\)
\(\displaystyle 9+16=c^2\)
\(\displaystyle c^2=25\)
\(\displaystyle c=\sqrt{25}=5\)

Example Question #142 : Coordinate Geometry

Vt_custom_xy_xytriangle_4

The above triangle has a height of \(\displaystyle 3\) and a base with length \(\displaystyle 4\). Find the perimeter of the triangle. 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 15\)

\(\displaystyle 12\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 12\)

Explanation:

The perimeter of this triangle can be found using the formula: \(\displaystyle P=height + base +\sqrt{height^2 +base^2}\)

Thus, the solution is:

\(\displaystyle P=3+4+\sqrt{3^2+4^2}\)
\(\displaystyle P=7+\sqrt{9+16}\)
\(\displaystyle P=7+\sqrt{25}\)
\(\displaystyle P=7+5=12\)

Learning Tools by Varsity Tutors