ISEE Lower Level Quantitative : How to make fractions equivalent

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{2}?\)

Possible Answers:

\(\displaystyle \frac{5}{6}\)

\(\displaystyle \frac{2}{6}\)

\(\displaystyle \frac{4}{6}\)

\(\displaystyle \frac{3}{6}\)

\(\displaystyle \frac{1}{6}\)

Correct answer:

\(\displaystyle \frac{3}{6}\)

Explanation:

6

The two lines above are the same length. The top line is split into \(\displaystyle 2\) pieces and the bottom line is split into \(\displaystyle 6\) pieces.

 \(\displaystyle \frac{1}{2}\) and \(\displaystyle \frac{3}{6}\) are equivalent because they occupy the same position on the number line. 

Example Question #2 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{2}?\) 

Possible Answers:

\(\displaystyle \frac{1}{3}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{2}{4}\)

Correct answer:

\(\displaystyle \frac{2}{4}\)

Explanation:

4

The two lines above are the same length. The top line is split into \(\displaystyle 2\) pieces and the bottom line is split into \(\displaystyle 4\) pieces.

 \(\displaystyle \frac{1}{2}\) and \(\displaystyle \frac{2}{4}\) are equivalent because they occupy the same position on the number line. 

Example Question #3 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{2}?\)

Possible Answers:

\(\displaystyle \frac{2}{12}\)

\(\displaystyle \frac{6}{12}\)

\(\displaystyle \frac{10}{12}\)

\(\displaystyle \frac{4}{12}\)

\(\displaystyle \frac{8}{12}\)

Correct answer:

\(\displaystyle \frac{6}{12}\)

Explanation:

12

The two lines above are the same length. The top line is split into \(\displaystyle 2\) pieces and the bottom line is split into \(\displaystyle 12\) pieces.

 \(\displaystyle \frac{1}{2}\) and \(\displaystyle \frac{6}{12}\) are equivalent because they occupy the same position on the number line. 

Example Question #4 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{2}?\)

Possible Answers:

\(\displaystyle \frac{5}{8}\)

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{6}{8}\)

\(\displaystyle \frac{8}{8}\)

\(\displaystyle \frac{7}{8}\)

Correct answer:

\(\displaystyle \frac{4}{8}\)

Explanation:

8

The two lines above are the same length. The top line is split into \(\displaystyle 2\) pieces and the bottom line is split into \(\displaystyle 8\) pieces.

 \(\displaystyle \frac{1}{2}\) and \(\displaystyle \frac{4}{8}\) are equivalent because they occupy the same position on the number line. 

Example Question #5 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{2}?\)

Possible Answers:

\(\displaystyle \frac{4}{10}\)

\(\displaystyle \frac{2}{10}\)

\(\displaystyle \frac{6}{10}\)

\(\displaystyle \frac{5}{10}\)

\(\displaystyle \frac{3}{10}\)

Correct answer:

\(\displaystyle \frac{5}{10}\)

Explanation:

10

The two lines above are the same length. The top line is split into \(\displaystyle 2\) pieces and the bottom line is split into \(\displaystyle 10\) pieces.

 \(\displaystyle \frac{1}{2}\) and \(\displaystyle \frac{5}{10}\) are equivalent because they occupy the same position on the number line. 

Example Question #6 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{2}{4}?\)

Possible Answers:

\(\displaystyle \frac{4}{10}\)

\(\displaystyle \frac{8}{10}\)

\(\displaystyle \frac{6}{10}\)

\(\displaystyle \frac{7}{10}\)

\(\displaystyle \frac{5}{10}\)

Correct answer:

\(\displaystyle \frac{5}{10}\)

Explanation:

10

The two lines above are the same length. The top line is split into \(\displaystyle 4\) pieces and the bottom line is split into \(\displaystyle 10\) pieces.

 \(\displaystyle \frac{2}{4}\) and \(\displaystyle \frac{5}{10}\) are equivalent because they occupy the same position on the number line. 

Example Question #7 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{2}{4}?\)

Possible Answers:

\(\displaystyle \frac{6}{12}\)

\(\displaystyle \frac{3}{12}\)

\(\displaystyle \frac{4}{12}\)

\(\displaystyle \frac{5}{12}\)

\(\displaystyle \frac{9}{12}\)

Correct answer:

\(\displaystyle \frac{6}{12}\)

Explanation:

12

The two lines above are the same length. The top line is split into \(\displaystyle 4\) pieces and the bottom line is split into \(\displaystyle 12\) pieces.

 \(\displaystyle \frac{2}{4}\) and \(\displaystyle \frac{6}{12}\) are equivalent because they occupy the same position on the number line. 

Example Question #8 : How To Make Fractions Equivalent

What fraction is equivalent to the following: \(\displaystyle \frac{1}{4}?\)

Possible Answers:

\(\displaystyle \frac{2}{12}\)

\(\displaystyle \frac{4}{12}\)

\(\displaystyle \frac{3}{12}\)

\(\displaystyle \frac{6}{12}\)

\(\displaystyle \frac{1}{12}\)

Correct answer:

\(\displaystyle \frac{3}{12}\)

Explanation:

12

The two lines above are the same length. The top line is split into \(\displaystyle 4\) pieces and the bottom line is split into \(\displaystyle 12\) pieces.

 \(\displaystyle \frac{1}{4}\) and \(\displaystyle \frac{3}{12}\) are equivalent because they occupy the same position on the number line. 

Example Question #9 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{3}{4}?\)

Possible Answers:

\(\displaystyle \frac{9}{12}\)

\(\displaystyle \frac{8}{12}\)

\(\displaystyle \frac{3}{12}\)

\(\displaystyle \frac{7}{12}\)

\(\displaystyle \frac{6}{12}\)

Correct answer:

\(\displaystyle \frac{9}{12}\)

Explanation:

12

The two lines above are the same length. The top line is split into \(\displaystyle 4\) pieces and the bottom line is split into \(\displaystyle 12\) pieces.

 \(\displaystyle \frac{3}{4}\) and \(\displaystyle \frac{9}{12}\) are equivalent because they occupy the same position on the number line. 

Example Question #10 : How To Make Fractions Equivalent

What fraction is equivalent to \(\displaystyle \frac{1}{3}?\)

Possible Answers:

\(\displaystyle \frac{2}{6}\)

\(\displaystyle \frac{5}{6}\)

\(\displaystyle \frac{1}{6}\)

\(\displaystyle \frac{3}{6}\)

\(\displaystyle \frac{4}{6}\)

Correct answer:

\(\displaystyle \frac{2}{6}\)

Explanation:

6

The two lines above are the same length. The top line is split into \(\displaystyle 3\) pieces and the bottom line is split into \(\displaystyle 6\) pieces.

 \(\displaystyle \frac{1}{3}\) and \(\displaystyle \frac{2}{6}\) are equivalent because they occupy the same position on the number line. 

Learning Tools by Varsity Tutors