ISEE Lower Level Quantitative : Parallelograms

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #201 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a yard with a perimeter of \displaystyle 34ft and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 11ft

\displaystyle 10ft

\displaystyle 9ft

\displaystyle 12ft

\displaystyle 8ft

Correct answer:

\displaystyle 9ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 34=2l+2(8)

\displaystyle 34=2l+16

Subtract \displaystyle 16 from both sides

\displaystyle 34-16=2l+16-16

\displaystyle 18=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{18}{2}=\frac{2l}{2}

\displaystyle 9=l

Example Question #111 : How To Find The Perimeter Of A Rectangle

What is the length of a yard with a perimeter of \displaystyle 18ft and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 4ft

\displaystyle 3ft

\displaystyle 7ft

\displaystyle 5ft

\displaystyle 6ft

Correct answer:

\displaystyle 5ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 18=2l+2(4)

\displaystyle 18=2l+8

Subtract \displaystyle 8 from both sides

\displaystyle 18-8=2l+8-8

\displaystyle 10=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{10}{2}=\frac{2l}{2}

\displaystyle 5=l

Example Question #471 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 5ft?

 

Possible Answers:

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 4ft

\displaystyle 5ft

\displaystyle 6ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(5)

\displaystyle 24=2l+10

Subtract \displaystyle 10 from both sides

\displaystyle 24-10=2l+10-10

\displaystyle 14=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{14}{2}=\frac{2l}{2}

\displaystyle 7=l

Example Question #117 : Solving For Length

What is the length of a yard with a perimeter of \displaystyle 20ft and a width of \displaystyle 6ft?

 

Possible Answers:

\displaystyle 4ft

\displaystyle 7ft

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 5ft

Correct answer:

\displaystyle 4ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 20=2l+2(6)

\displaystyle 20=2l+12

Subtract \displaystyle 12 from both sides

\displaystyle 20-12=2l+12-12

\displaystyle 8=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{8}{2}=\frac{2l}{2}

\displaystyle 4=l

Example Question #111 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a yard with a perimeter of \displaystyle 14ft and a width of \displaystyle 5ft?

 

Possible Answers:

\displaystyle 1ft

\displaystyle 4ft

\displaystyle 3ft

\displaystyle 5ft

\displaystyle 2ft

Correct answer:

\displaystyle 2ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 14=2l+2(5)

\displaystyle 14=2l+10

Subtract \displaystyle 10 from both sides

\displaystyle 14-10=2l+10-10

\displaystyle 4=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{4}{2}=\frac{2l}{2}

\displaystyle 2=l

Example Question #119 : Solving For Length

What is the length of a yard with a perimeter of \displaystyle 22ft and a width of \displaystyle 2ft?

 

Possible Answers:

\displaystyle 5ft

\displaystyle 9ft

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 7ft

Correct answer:

\displaystyle 9ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 22=2l+2(2)

\displaystyle 22=2l+4

Subtract \displaystyle 4 from both sides

\displaystyle 22-4=2l+4-4

\displaystyle 18=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{18}{2}=\frac{2l}{2}

\displaystyle 9=l

Example Question #203 : Solve Problems Involving Measurement And Conversion Of Measurements

Angela has a garden that she wants to put a fence around. How much fencing will she need if her garden is \displaystyle 6ft by \displaystyle 3ft?

 

Possible Answers:

\displaystyle 19ft

\displaystyle 17ft

\displaystyle 18ft

\displaystyle 16ft

\displaystyle 20ft

Correct answer:

\displaystyle 18ft

Explanation:

The fence is going around the garden, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(6)+2(3)

\displaystyle P=12+6

\displaystyle P=18

Example Question #204 : Solve Problems Involving Measurement And Conversion Of Measurements

Angela has a garden that she wants to put a fence around. How much fencing will she need if her garden is \displaystyle 4ft by \displaystyle 10ft?

 

Possible Answers:

\displaystyle 26ft

\displaystyle 28ft

\displaystyle 25ft

\displaystyle 29ft

\displaystyle 27ft

Correct answer:

\displaystyle 28ft

Explanation:

The fence is going around the garden, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(4)+2(10)

\displaystyle P=8+20

\displaystyle P=28

Example Question #205 : Solve Problems Involving Measurement And Conversion Of Measurements

Angela has a garden that she wants to put a fence around. How much fencing will she need if her garden is \displaystyle 8ft by \displaystyle 3ft?

 

Possible Answers:

\displaystyle 21ft

\displaystyle 24ft

\displaystyle 22ft

\displaystyle 23ft

\displaystyle 20ft

Correct answer:

\displaystyle 22ft

Explanation:

The fence is going around the garden, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(8)+2(3)

\displaystyle P=16+6

\displaystyle P=22

Example Question #121 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

Angela has a garden that she wants to put a fence around. How much fencing will she need if her garden is \displaystyle 6ft by \displaystyle 2ft?

 

Possible Answers:

\displaystyle 18ft

\displaystyle 19ft

\displaystyle 16ft

\displaystyle 15ft

\displaystyle 17ft

Correct answer:

\displaystyle 16ft

Explanation:

The fence is going around the garden, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(6)+2(2)

\displaystyle P=12+4

\displaystyle P=16

Learning Tools by Varsity Tutors