ISEE Middle Level Math : Variables

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2111 : Isee Middle Level (Grades 7 8) Mathematics Achievement

\(\displaystyle 6^{3} \div (11-5)=\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 13.5\)

\(\displaystyle 36\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 36\)

Explanation:

First find the exponent value: \(\displaystyle 6^{3}=216\)

Then find the value of \(\displaystyle \left ( 11-5 \right )=6\)

Finally, solve the entire expression with the known values: \(\displaystyle 216\div 6=36\)

The answer is 36.

Example Question #1 : Operations

Simplify:

\(\displaystyle 4 (2x + 7) - 4\)

Possible Answers:

\(\displaystyle 8x + 12\)

\(\displaystyle 8x + 3\)

\(\displaystyle 4x + 24\)

\(\displaystyle 8x + 24\)

\(\displaystyle 4x + 12\)

Correct answer:

\(\displaystyle 8x + 24\)

Explanation:

\(\displaystyle 4 (2x + 7) - 4\)

\(\displaystyle =4 \cdot 2x + 4 \cdot 7 - 4\)

\(\displaystyle =8x + 28 - 4\)

\(\displaystyle =8x + 24\)

Example Question #1 : Multiplying And Dividing Polynomials

Multiply:

\(\displaystyle 4x(3x-2)\)

Possible Answers:

\(\displaystyle 12x-8\)

\(\displaystyle 12x^2-8x\)

\(\displaystyle 12x+8\)

\(\displaystyle 12x^2+8x\)

Correct answer:

\(\displaystyle 12x^2-8x\)

Explanation:

Use the distributive property:

\(\displaystyle 4x(3x-2)=(4x\times3x)-(4x\times2)=12x^2-8x\)

Example Question #2 : Algebraic Concepts

\(\displaystyle 14s \cdot 3s=\)

Possible Answers:

\(\displaystyle 13s\)

\(\displaystyle 17s\)

\(\displaystyle 42s^{2}\)

\(\displaystyle 48s\)

Correct answer:

\(\displaystyle 42s^{2}\)

Explanation:

Multiply the numbers and multiply the variables:

\(\displaystyle 14\cdot 3\cdot s\cdot s=42s^{2}\)

Answer: \(\displaystyle 42s^{2}\)

Example Question #1 : Algebraic Concepts

Simplify:

\(\displaystyle -8 (-2y^{2}+ 7y - 9)\)

Possible Answers:

\(\displaystyle 16y^{2} -7y+9\)

\(\displaystyle 16y^{2} -56y+72\)

\(\displaystyle 16y^{2} -56y-72\)

\(\displaystyle 16y^{2} +7y-9\)

Correct answer:

\(\displaystyle 16y^{2} -56y+72\)

Explanation:

\(\displaystyle -8 (-2y^{2}+ 7y - 9)\)

\(\displaystyle = -8\cdot (-2y^{2} ) +\left ( -8 \right ) \cdot 7y -\left ( - 8\right ) \cdot 9\)

\(\displaystyle = 16y^{2} -56y+72\)

Example Question #1 : Variables

Multiply:

\(\displaystyle -4x(x+3)\)

Possible Answers:

\(\displaystyle 4x^2-12x\)

\(\displaystyle -4x^2-12x\)

\(\displaystyle -4x^2+12x\)

\(\displaystyle 4x^2+12x\)

Correct answer:

\(\displaystyle -4x^2-12x\)

Explanation:

\(\displaystyle -4x(x+3)=(-4x)(x)+(-4x)3=-4x^2+(-12x)\)

\(\displaystyle =-4x^2-12x\)

Example Question #1242 : Hspt Mathematics

\(\displaystyle 67h*3h=\)

Possible Answers:

\(\displaystyle 200h\)

\(\displaystyle 201h\)

\(\displaystyle 200h^{2}\)

\(\displaystyle 201h^{2}\)

Correct answer:

\(\displaystyle 201h^{2}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\(\displaystyle 67h*3h=201h^{2}\)

Answer: \(\displaystyle 201h^{2}\)

Example Question #3 : Algebraic Concepts

\(\displaystyle 602k*3k^{3}=\)

Possible Answers:

\(\displaystyle 1204k^{4}\)

\(\displaystyle 1806k\)

\(\displaystyle 1806k^{4}\)

\(\displaystyle 1806k^{3}\)

Correct answer:

\(\displaystyle 1806k^{4}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\(\displaystyle 602k*3k^{3}=1806k^{4}\)

Answer: \(\displaystyle 1806k^{4}\)

Example Question #2 : How To Multiply Variables

\(\displaystyle 45n^{2}*5n^{2}=\)

Possible Answers:

\(\displaystyle 45n^{4}\)

\(\displaystyle 452n\)

\(\displaystyle 225n^{4}\)

\(\displaystyle 90n\)

Correct answer:

\(\displaystyle 225n^{4}\)

Explanation:

Multiply the whole numbers and add an exponent to the variable totaling the number of exponents in the equation:

\(\displaystyle 45n^{2}*5n^{2}=225n^{4}\)

Answer: \(\displaystyle 225n^{4}\)

Example Question #3 : How To Multiply Variables

\(\displaystyle 33d*11d=\)

Possible Answers:

\(\displaystyle 363d^{3}\)

\(\displaystyle 363d^{2}\)

\(\displaystyle 363d\)

\(\displaystyle 3311d^{2}\)

Correct answer:

\(\displaystyle 363d^{2}\)

Explanation:

Multiply the constants and add an exponent to the variable totaling the number of variables in the equation:

\(\displaystyle 33d*11d=363d^{2}\)

Answer: \(\displaystyle 363d^{2}\)

Learning Tools by Varsity Tutors