ISEE Middle Level Math : How to find the solution to an equation

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : How To Find The Solution To An Equation

\displaystyle 2^{2}*3^{2}=

Possible Answers:

\displaystyle 36

\displaystyle 80

\displaystyle 5

\displaystyle 13

Correct answer:

\displaystyle 36

Explanation:

First, solve the exponents:

\displaystyle 2^{2}=4

\displaystyle 3^{2}=9

Then, solve the equation:

\displaystyle 4*9=36

 

Example Question #112 : How To Find The Solution To An Equation

\displaystyle 5^{2}*4^2=

Possible Answers:

\displaystyle 400

 

\displaystyle 41

\displaystyle 80

\displaystyle 13

Correct answer:

\displaystyle 400

 

Explanation:

First, solve the exponents:

\displaystyle 5^{2}=25

\displaystyle 4^{2}=16

Then, solve the equation:

\displaystyle 25*16=400

 

Example Question #113 : How To Find The Solution To An Equation

\displaystyle 6r*11r=

Possible Answers:

\displaystyle 17r^{2}

\displaystyle 611r^{2}

\displaystyle 66r^{2}

\displaystyle 5r^{3}

 

 

Correct answer:

\displaystyle 66r^{2}

Explanation:

First, multiply the whole numbers.

Then, keep the variable the same and add an exponent totalling the number of variables in the equation:

\displaystyle 6r*11r=66r^{2}

Answer: \displaystyle 66r^{2}

Example Question #114 : How To Find The Solution To An Equation

\displaystyle 21s*15s=

Possible Answers:

\displaystyle 6s

\displaystyle 315s^{2}

 

\displaystyle 300s^{2}

\displaystyle 315s

Correct answer:

\displaystyle 315s^{2}

 

Explanation:

First, multiply the whole numbers.

Then, keep the variable the same and add an exponent totalling the number of variables in the equation:

\displaystyle 21s*15s=315s^{2}

Answer: \displaystyle 315s^{2}

 

Example Question #115 : How To Find The Solution To An Equation

\displaystyle 17r*7r=

Possible Answers:

\displaystyle 24r^{2}

\displaystyle 10r

\displaystyle 119r

\displaystyle 119r^{2}

Correct answer:

\displaystyle 119r^{2}

Explanation:

Multiply the whole numbers, and raise the variable's exponent by one:

\displaystyle 17r*7r=119r^{2}

Answer: \displaystyle 119r^{2}

Example Question #918 : Concepts

Solve for \displaystyle x:

\displaystyle 2x+4=-2

Possible Answers:

\displaystyle x=-2

\displaystyle x=-3

\displaystyle x=-1

\displaystyle x=0

Correct answer:

\displaystyle x=-3

Explanation:

\displaystyle 2x+4=-2

\displaystyle 2x+4-4=-2-4

\displaystyle 2x=-6

\displaystyle \frac{2x}{2}=\frac{-6}{2}

\displaystyle x=-3

Example Question #919 : Concepts

Solve for \displaystyle t:

\displaystyle -\frac{t}{4}+7=\frac{5}{2}

Possible Answers:

\displaystyle t=-38

\displaystyle t=8

\displaystyle t=18

\displaystyle t=38

Correct answer:

\displaystyle t=18

Explanation:

\displaystyle -\frac{t}{4}+7=\frac{5}{2}

\displaystyle 4(-\frac{t}{4}+7)=4(\frac{5}{2})

\displaystyle -t+28=10

\displaystyle -t+28-28=10-28

\displaystyle -t=-18

\displaystyle -1(-t)=-1(-18)

\displaystyle t=18

 

Example Question #117 : How To Find The Solution To An Equation

Solve for \displaystyle n:

\displaystyle \frac{n}{3}-4=2

Possible Answers:

\displaystyle n=2

\displaystyle n=12

\displaystyle n=6

\displaystyle n=18

Correct answer:

\displaystyle n=18

Explanation:

\displaystyle \frac{n}{3}-4=2

\displaystyle \frac{n}{3}-4+4=2+4

\displaystyle \frac{n}{3}=6

\displaystyle (3)(\frac{n}{3})=(6)(3)

\displaystyle n=18

Example Question #116 : How To Find The Solution To An Equation

Multiply: \displaystyle 17n\ast 3n=

Possible Answers:

\displaystyle 20n^{2}

\displaystyle 34n^{2}

\displaystyle 51n^{2}

\displaystyle 14n^{2}

Correct answer:

\displaystyle 51n^{2}

Explanation:

Multiply the whole numbers, and add an exponent to the variable totalling the amount of exponents in the equation:

\displaystyle 17n*3n=51n^{2}

Answer: \displaystyle 51n^{2}

Example Question #117 : How To Find The Solution To An Equation

Multiply: \displaystyle 26s*10s=

Possible Answers:

\displaystyle 260s^{2}

\displaystyle 16s^{2}

\displaystyle 2610s^{2}

\displaystyle 26s^{2}

Correct answer:

\displaystyle 260s^{2}

Explanation:

Multiply the whole numbers, adding an exponent to the variable totalling the amount of variables in the equation:

\displaystyle 26s*10s=260s^{2}

Answer: \displaystyle 260s^{2}

Learning Tools by Varsity Tutors