ISEE Middle Level Quantitative : How to find the answer from a table

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #194 : Data Analysis

Use the chart below to answer the question.

Screen shot 2015 09 28 at 9.01.27 am

How many more students have a pet in Ms. Miller's class than Ms. Hen's class? 

Possible Answers:

\displaystyle 2

\displaystyle 5

\displaystyle 1

\displaystyle 3

\displaystyle 4

Correct answer:

\displaystyle 3

Explanation:

Each square represents \displaystyle 3 students.  Ms. Miller's bar has \displaystyle 3 squares in it, which means she has \displaystyle 9 students with pets (\displaystyle 3\times3=9). Ms. Hen's bar has \displaystyle 2 squares in it, which means she has \displaystyle 6 students with pets (\displaystyle 3\times2=6).

To find the difference we subtract. 

\displaystyle 9-6=3

Example Question #195 : Data Analysis

Use the chart below to answer the question.

Screen shot 2015 09 28 at 9.01.27 am

How many students have pets in Mr. Ray's class and Ms. Hen's class?

Possible Answers:

\displaystyle 14

\displaystyle 18

\displaystyle 9

\displaystyle 6

\displaystyle 12

Correct answer:

\displaystyle 18

Explanation:

Each square represents \displaystyle 3 students. Mr. Ray's bar has \displaystyle 4 squares in it, which means he has \displaystyle 12 students with pets (\displaystyle 3\times4=12). Ms. Hen's bar has \displaystyle 2 squares in it, which means she has \displaystyle 6 students with pets (\displaystyle 3\times2=6). 

To find the total in both classes we add. 

\displaystyle 12+6=18

Example Question #196 : Data Analysis

Use the chart below to answer the question.

Screen shot 2015 09 28 at 9.01.27 am

How many students have pets in Ms. Smith's class and Ms. Hen's class?

Possible Answers:

\displaystyle 9

\displaystyle 21

\displaystyle 7

\displaystyle 18

\displaystyle 12

Correct answer:

\displaystyle 21

Explanation:

Each square represents \displaystyle 3 students. Ms. Smith's bar has \displaystyle 5 squares in it, which means she has \displaystyle 15 students with pets (\displaystyle 3\times5=15). Ms. Hen's bar has \displaystyle 2 squares in it, which means she has \displaystyle 6 students with pets (\displaystyle 3\times2=6). 

To find the total in both classes we add. 

\displaystyle 15+6=21

Example Question #21 : How To Find The Answer From A Table

Use the chart below to answer the question.

Screen shot 2015 09 28 at 10.01.05 am

How many students in first grade have a sibling? 

Possible Answers:

\displaystyle 20

\displaystyle 21

\displaystyle 28

\displaystyle 26

\displaystyle 25

Correct answer:

\displaystyle 28

Explanation:

Each square represents \displaystyle 7 students. The first grade bar has \displaystyle 4 squares in it. That means we can take \displaystyle 7\times 4 to find our total. 

\displaystyle 7\times4=28

Example Question #92 : How To Find The Answer From A Table

Use the chart below to answer the question.


Screen shot 2015 09 28 at 10.01.05 am

How many students in second grade have a sibling? 

 

Possible Answers:

\displaystyle 36

\displaystyle 37

\displaystyle 38

\displaystyle 39

\displaystyle 35

Correct answer:

\displaystyle 35

Explanation:

Each square represents \displaystyle 7 students. The second grade bar has \displaystyle 5 squares in it. That means we can take \displaystyle 7\times 5 to find our total. 

\displaystyle 7\times5=35

Example Question #199 : Data Analysis

Use the chart below to answer the question.


Screen shot 2015 09 28 at 10.01.05 am

How many students in third grade have a sibling? 

 

Possible Answers:

\displaystyle 9

\displaystyle 14

\displaystyle 7

\displaystyle 12

\displaystyle 16

Correct answer:

\displaystyle 14

Explanation:

Each square represents \displaystyle 7 students. The third grade bar has \displaystyle 2 squares in it. That means we can take \displaystyle 7\times 2 to find our total. 

\displaystyle 7\times2=14

Example Question #200 : Data Analysis

Use the chart below to answer the question.

Screen shot 2015 09 28 at 10.01.05 am

How many more students have a sibling in the first grade group than the third grade group? 

Possible Answers:

\displaystyle 4

\displaystyle 10

\displaystyle 8

\displaystyle 2

\displaystyle 14

Correct answer:

\displaystyle 14

Explanation:

Each square represents \displaystyle 7 students. The first grade bar has \displaystyle 4 squares in it, which means there are \displaystyle 28 students who have a sibling (\displaystyle 7\times4=28).The third grade bar has \displaystyle 2 squares in it, which means there are \displaystyle 14 students who have a sibling (\displaystyle 7\times2=14). 

To find the difference we subtract. 

\displaystyle 28-14=14

Example Question #93 : How To Find The Answer From A Table

Use the chart below to answer the question.

Screen shot 2015 09 28 at 10.01.05 am

How many more students have a sibling in the first grade group than the fourth grade group? 

 

Possible Answers:

\displaystyle 1

\displaystyle 9

\displaystyle 7

\displaystyle 3

\displaystyle 12

Correct answer:

\displaystyle 7

Explanation:

Each square represents \displaystyle 7 students. The first grade bar has \displaystyle 4 squares in it, which means there are \displaystyle 28 students who have a sibling (\displaystyle 7\times4=28).The fourth grade bar has \displaystyle 3 squares in it, which means there are \displaystyle 21 students who have a sibling (\displaystyle 7\times3=21). 

To find the difference we subtract. 

\displaystyle 28-21=7

Example Question #94 : How To Find The Answer From A Table

Use the chart below to answer the question.


Screen shot 2015 09 28 at 10.01.05 am

How many more students have a sibling in the fourth grade group than the third grade group? 

 

Possible Answers:

\displaystyle 5

\displaystyle 1

\displaystyle 9

\displaystyle 7

\displaystyle 6

Correct answer:

\displaystyle 7

Explanation:

Each square represents \displaystyle 7 students. The fourth grade bar has \displaystyle 3 squares in it, which means there are \displaystyle 21 students who have a sibling (\displaystyle 7\times3=21).The third grade bar has \displaystyle 2 squares in it, which means there are \displaystyle 14 students who have a sibling (\displaystyle 7\times2=14). 

To find the difference we subtract. 

\displaystyle 21-14=7

Example Question #95 : How To Find The Answer From A Table

Use the chart below to answer the question.

Screen shot 2015 09 28 at 10.01.05 am

How many more students have a sibling in the second grade group than the third grade group? 

 

Possible Answers:

\displaystyle 28

\displaystyle 3

\displaystyle 21

\displaystyle 14

\displaystyle 7

Correct answer:

\displaystyle 21

Explanation:

Each square represents \displaystyle 7 students. The second grade bar has \displaystyle 5 squares in it, which means there are \displaystyle 35 students who have a sibling (\displaystyle 7\times5=35).The third grade bar has \displaystyle 2 squares in it, which means there are \displaystyle 14 students who have a sibling (\displaystyle 7\times2=14).

To find the difference we subtract. 

\displaystyle 35-14=21

Learning Tools by Varsity Tutors