ISEE Upper Level Math : Geometry

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Surface Area Of A Sphere

Find the surface area of a sphere with a diameter of 20in.

Possible Answers:

\displaystyle 400\pi \text{ in}^2

\displaystyle 600\pi \text{ in}^2

\displaystyle 200\pi \text{ in}^2

\displaystyle 300\pi \text{ in}^2

\displaystyle 800\pi \text{ in}^2

Correct answer:

\displaystyle 400\pi \text{ in}^2

Explanation:

To find the surface area of a sphere, we will use the following formula:

\displaystyle SA = 4 \cdot \pi \cdot r^2

where r is the radius of the sphere.

 

Now, we know the diameter of the sphere is 20in.  We also know the diameter is two times the radius.  Therefore, the radius is 10in. 

Knowing this, we can substitute into the formula.  We get

\displaystyle SA = 4 \cdot \pi \cdot (10\text{in})^2

\displaystyle SA = 4 \cdot \pi \cdot 100\text{in}^2

\displaystyle SA = 400 \pi \text{ in}^2

Example Question #411 : Geometry

Find the surface area of a sphere with a diameter of 12in.

Possible Answers:

\displaystyle 108\pi \text{ in}^2

\displaystyle 144\pi \text{ in}^2

\displaystyle 48\pi \text{ in}^2

\displaystyle 96\pi \text{ in}^2

\displaystyle 121\pi \text{ in}^2

Correct answer:

\displaystyle 144\pi \text{ in}^2

Explanation:

To find the surface area of a sphere, we will use the following formula:

\displaystyle SA = 4\pi r^2

where r is the radius of the sphere.

Now, we know the diameter of the sphere is 12in. We also know the diameter is two times the radius. Therefore, the radius is 6in. So, we get

\displaystyle SA = 4 \cdot \pi \cdot (6\text{in})^2

\displaystyle SA = 4 \cdot \pi \cdot 36\text{in}^2

\displaystyle SA = 144\pi \text{ in}^2

Example Question #11 : How To Find The Surface Area Of A Sphere

A spherical buoy has a radius of \displaystyle 5 meters. What is the surface area of the buoy?

Possible Answers:

\displaystyle 100 m^2

\displaystyle 50 m^2

\displaystyle 100\pi m^2

\displaystyle 50\pi m^2

\displaystyle 75m^2

Correct answer:

\displaystyle 100\pi m^2

Explanation:

A spherical buoy has a radius of 5 meters. What is the surface area of the buoy?

To find the surface area of a sphere, use the following:

\displaystyle SA_{sphere}=4\pi r^2

Plug in our radius and solve!

\displaystyle SA_{sphere}=4\pi (5m)^2=100\pi m^2

Example Question #91 : Solid Geometry

A cone has height 18 inches; its base has radius 4 inches. Give its volume in cubic feet (leave in terms of \displaystyle \pi )

Possible Answers:

\displaystyle \frac{1}{18} \pi \textrm{ ft}^{3}

\displaystyle \frac{1}{6} \pi \textrm{ ft}^{3}

\displaystyle \frac{1}{12} \pi \textrm{ ft}^{3}

\displaystyle \frac{1}{3} \pi \textrm{ ft}^{3}

\displaystyle \frac{1}{4} \pi \textrm{ ft}^{3}

Correct answer:

\displaystyle \frac{1}{18} \pi \textrm{ ft}^{3}

Explanation:

Convert radius and height from inches to feet by dividing by 12:

Height: 18 inches = \displaystyle 18 \div 12 = \frac{18}{12} = \frac{3}{2} feet

Radius: 4 inches = \displaystyle 4 \div 12 = \frac{4}{12} = \frac{1}{3}

The volume of a cone is given by the formula

\displaystyle V = \frac{1}{3} \pi r^{2} h

Substitute \displaystyle r = \frac{1}{3}, h = \frac{3}{2}:

\displaystyle V = \frac{1}{3}\cdot \left ( \frac{1}{3} \right ) ^{2}\cdot \frac{3}{2} \cdot \pi

\displaystyle V = \frac{1}{3}\cdot\frac{1}{3}\cdot \frac{1}{3}\cdot \frac{3}{2} \cdot \pi

\displaystyle V = \frac{1}{1}\cdot\frac{1}{3}\cdot \frac{1}{3}\cdot \frac{1}{2} \cdot \pi

\displaystyle V = \frac{1}{18} \pi

Example Question #2 : How To Find The Volume Of A Cone

Give the volume of a cone whose height is 10 inches and whose base is a circle with circumference \displaystyle 6 \pi inches. 

Possible Answers:

\displaystyle 360 \pi \textrm{ in}^{3}

\displaystyle 120 \pi \textrm{ in}^{3}

\displaystyle 30 \pi \textrm{ in}^{3}

\displaystyle 90 \pi \textrm{ in}^{3}

\displaystyle 45 \pi \textrm{ in}^{3}

Correct answer:

\displaystyle 30 \pi \textrm{ in}^{3}

Explanation:

A circle with circumference \displaystyle 6 \pi inches has as its radius 

\displaystyle r = \frac{C }{2\pi }=\frac{6\pi }{2\pi } = 3 inches.

The area of the base is therefore

\displaystyle B = \pi r^{2} = \pi \cdot 3^{2} = 9 \pi square inches.

To find the volume of the cone, substitute \displaystyle B = 9 \pi , h = 10 in the formula for the volume of a cone:

\displaystyle V = \frac{1}{3} Bh = \frac{1}{3} \cdot 9 \pi \cdot 10 = 30 \pi cubic inches

Example Question #3 : How To Find The Volume Of A Cone

The height of a cone and the radius of its base are equal. The circumference of the base is \displaystyle 10 \pi inches. Give its volume.

Possible Answers:

\displaystyle \frac{5,000}{3} \pi \textrm{ in}^{3}

\displaystyle \frac{1,000}{3} \pi \textrm{ in}^{3}

\displaystyle 125 \textrm{ in}^{3}

\displaystyle 1,000 \textrm{ in}^{3}

\displaystyle \frac{125}{3} \pi \textrm{ in}^{3}

Correct answer:

\displaystyle \frac{125}{3} \pi \textrm{ in}^{3}

Explanation:

A circle with circumference \displaystyle 10 \pi inches has as its radius 

\displaystyle r = \frac{C }{2\pi }=\frac{10\pi }{2\pi } = 5 inches.

The height is also \displaystyle 5 inches, so substitute \displaystyle h = r = 5 in the volume formula for a cone:

\displaystyle V = \frac{1}{3} \pi r ^{2}h = \frac{1}{3} \pi \cdot 5 ^{2} \cdot 5 = \frac{125}{3} \pi cubic inches

Example Question #2 : How To Find The Volume Of A Cone

You are an architect designing a cone shaped structure. If the structure will be 30 ft tall and 10 feet wide at the base, what will the volume of the structure be?

 

Possible Answers:

\displaystyle 250 \pi ft^3

\displaystyle 100 \pi ft^3

\displaystyle 22.5 \pi ft^3

\displaystyle 250 ft^3

Correct answer:

\displaystyle 250 \pi ft^3

Explanation:

You are an architect designing a cone shaped structure. If the structure will be 30 ft tall and 10 feet wide at the base, what will the volume of the structure be?

Begin by using the formula for volume of a cone:

\displaystyle V=\pi r^2\frac{h}{3}

Now, we simply need to plug in our knowns.

We know the height is 30 ft.

We know that the diameter is 10ft, however, we need the radius.

Divide 10 by 2 to get a radius of 5 ft.

Now, let's go....

\displaystyle V=\pi (5ft)^2\frac{30ft}{3}=\pi25ft^2*10ft=250 \pi ft^3

Example Question #1 : Cones

Find the volume of a cone with the following measurements:

  • diameter = 12in
  • height = 6in
Possible Answers:

\displaystyle 48\pi \text{ in}^3

\displaystyle 36\pi \text{ in}^3

\displaystyle 72\pi \text{ in}^3

\displaystyle 84\pi \text{ in}^3

\displaystyle 54\pi \text{ in}^3

Correct answer:

\displaystyle 72\pi \text{ in}^3

Explanation:

To find the volume of a cone, we will use the following formula:

\displaystyle V = \pi r^2 \frac{h}{3}

where r is the radius and h is the height of the cone.

 

Now, we know the diameter of the cone is 12in.  We also know the diameter is two times the radius.  Therefore, the radius is 6in.

We know the height of the cone is 6in.

Knowing all of this, we can substitute into the formula.  We get

\displaystyle V = \pi \cdot (6\text{in})^2 \cdot \frac{6\text{in}}{3}

\displaystyle V = \pi \cdot 36\text{in}^2 \cdot 2\text{in}

\displaystyle V = \pi \cdot 72\text{in}^3

\displaystyle V = 72\pi \text{ in}^3

Example Question #1 : Cones

Find the volume of a cone with the following measurements:

Diameter:  14in
Height:  9in

Possible Answers:

\displaystyle 252\pi \text{ in}^3

\displaystyle 126\pi \text{ in}^3

\displaystyle 441\pi \text{ in}^3

\displaystyle 147\pi \text{ in}^3

\displaystyle 63\pi \text{ in}^3

Correct answer:

\displaystyle 147\pi \text{ in}^3

Explanation:

To find the volume of a cone, we will use the following formula:

\displaystyle V = \pi r^2 \frac{h}{3}

where r is the radius and h is the height of the cone.

 

Now, we know the diameter of the cone is 14in.  We also know the diameter is two times the radius.  Therefore, the radius is 7in.

We know the height of the cone is 9in.

Knowing all of this, we can substitute into the formula.  We get

\displaystyle V = \pi \cdot (7\text{in})^2 \cdot \frac{9\text{in}}{3}

\displaystyle V = \pi \cdot 49\text{in}^2 \cdot 3\text{in}

\displaystyle V = \pi \cdot 147\text{in}^3

\displaystyle V = 147\pi \text{ in}^3

Example Question #1 : How To Find The Volume Of A Cone

Find the volume of a cone with the following measurements:

  • height:  12in
  • diameter:  6in
Possible Answers:

\displaystyle 24\pi \text{ in}^3

\displaystyle 28\pi \text{ in}^3

\displaystyle 32\pi \text{ in}^3

\displaystyle 36\pi \text{ in}^3

\displaystyle 48\pi \text{ in}^3

Correct answer:

\displaystyle 36\pi \text{ in}^3

Explanation:

To find the volume of a cone, we will use the following formula:

\displaystyle V = \pi r^2 \frac{h}{3}

where r is the radius and is the height of the cone.

Now, we know the height of the cone is 12in. We also know the diameter of the cone is 6in. We know the diameter is two times the radius. Therefore, the radius is 3in.  

So, we get

\displaystyle V = \pi \cdot (3\text{in})^2 \cdot \frac{12\text{in}}{3}

\displaystyle V = \pi \cdot 9\text{in}^2 \cdot 4\text{in}

\displaystyle V = \pi \cdot 36\text{in}^3

\displaystyle V = 36\pi \text{ in}^3

Learning Tools by Varsity Tutors