ISEE Upper Level Math : How to multiply exponents

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Multiply Exponents

What is the value of this equation?

\displaystyle (x^{2})^{3}-(2^{3})^{2}

Possible Answers:

\displaystyle x^{6}-64

\displaystyle x^{6}-32

\displaystyle x^{5}-64

\displaystyle x^{6}+64

Correct answer:

\displaystyle x^{6}-64

Explanation:

When an exponent is raised to another exponent, the exponents should be multiplied toghether. This will result in:

\displaystyle (x^{2})^{3}-(2^{3})^{2}

\displaystyle x^{6}-2^{6}

\displaystyle x^{6}-64

Example Question #12 : How To Multiply Exponents

Which expression is equal to \displaystyle (x^{2})^{3}?

Possible Answers:

\displaystyle x^{\frac{2}{3}}

\displaystyle x^{5}

\displaystyle x^{6}

\displaystyle x^{\frac{3}{2}}

Correct answer:

\displaystyle x^{6}

Explanation:

When exponent of a value is raised to another exponent, the values of the exponents are multiplied by each other. 

\displaystyle (x^{2})^{3}

2 is multiplied by 3, and so the exponent of x is 6. 

\displaystyle x^{6}

Example Question #13 : How To Multiply Exponents

What is the value of \displaystyle (2^{6})^{\frac{1}{2}}?

Possible Answers:

\displaystyle 8

\displaystyle 32

\displaystyle 16

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

When one exponent is raised to another exponent, the values of the exponents should be multiplied together. Thus, 

\displaystyle (2^{6})^{\frac{1}{2}} can be simplified to \displaystyle 2^{3}, given that \displaystyle 6\cdot \frac{1}{2}=3

\displaystyle 2^{3}=2\cdot2\cdot2=8

Example Question #14 : How To Multiply Exponents

What is the expression below equal to?

\displaystyle 3x^{4}*5x^{9}

Possible Answers:

\displaystyle 8x^{9}

\displaystyle 15x^{13}

\displaystyle 8x^{36}

\displaystyle 15x^{36}

Correct answer:

\displaystyle 15x^{13}

Explanation:

When exponents are multiplied by each other, the powers should be added together. Meanwhile, numbers not raised to an exponent are simply multiplied by each other. 

Therefore, the answer is \displaystyle 15x^{13}, because \displaystyle 3*5=15, and \displaystyle 9+4=13

Example Question #15 : How To Multiply Exponents

What is the value of \displaystyle -1^{323}?

Possible Answers:

\displaystyle 323

\displaystyle -1

\displaystyle -323

\displaystyle 1

Correct answer:

\displaystyle -1

Explanation:

1 raised to any exponent will always be 1. 

-1 will be equal to 1 when the exponent is even and will be equal to -1 when the exponent is odd. 

Given that 323 is odd, \displaystyle -1^{323} is equal to -1. 

Example Question #516 : Isee Upper Level (Grades 9 12) Mathematics Achievement

Simplify the following:

\displaystyle 6x^5*5x^6*3x^2

Possible Answers:

\displaystyle 33x^{11}

\displaystyle 14x^{90}

\displaystyle 90x^{13}

\displaystyle 45x^{7}

Correct answer:

\displaystyle 90x^{13}

Explanation:

Simplify the following:

\displaystyle 6x^5*5x^6*3x^2

Let's begin by recalling two rules

1) When multiplying variables with a common base, add the exponents.

2) When multiplying variables with a common base, multiply the coefficients.

\displaystyle 6x^5*5x^6*3x^2=(5*6*3)x^{5+6+2}=90x^{13}

So, our answer is 

\displaystyle 90x^{13}

Learning Tools by Varsity Tutors