ISEE Upper Level Quantitative : Variables and Exponents

Study concepts, example questions & explanations for ISEE Upper Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : How To Divide Exponential Variables

Simplify: 

\(\displaystyle \frac{10 x ^{-6} y ^{-4}}{20x ^{-8}y^{-2}}\)

Possible Answers:

\(\displaystyle \frac{y ^{2} }{2x ^{2} }\)

\(\displaystyle \frac{2}{x ^{2}y ^{2} }\)

\(\displaystyle \frac{x ^{2} }{2y ^{2} }\)

\(\displaystyle \frac{x ^{2}y ^{2} }{2 }\)

\(\displaystyle \frac{1 }{2 x ^{2}y ^{2}}\)

Correct answer:

\(\displaystyle \frac{x ^{2} }{2y ^{2} }\)

Explanation:

Break the fraction up and apply the quotient of powers rule:

\(\displaystyle \frac{10 x ^{-6} y ^{-4}}{20x ^{-8}y^{-2}}\)

\(\displaystyle = \frac{10 }{20} \cdot \frac{ x ^{-6} }{x ^{-8}} \cdot \frac{y ^{-4}}{y^{-2}}\)

\(\displaystyle = \frac{1 }{2} \cdot x ^{-6- (-8)} \cdot y ^{-4- (-2)}\)

\(\displaystyle = \frac{1 }{2} \cdot x ^{2} \cdot y ^{-2}\)

\(\displaystyle = \frac{1 }{2} \cdot x ^{2} \cdot \frac{1}{y ^{2}}\)

\(\displaystyle = \frac{x ^{2} }{2y ^{2} }\)

Learning Tools by Varsity Tutors