Linear Algebra : Matrices

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Matrix Matrix Product

\displaystyle A = \begin{bmatrix} \cos \frac{4\pi }{13}\\ \\i \sin \frac{4\pi }{13}\end{bmatrix}

If \displaystyle A^{T}A = \begin{bmatrix} a \end{bmatrix}, then which expression is equal to \displaystyle a?

Possible Answers:

\displaystyle a= \frac{1}{2}\sin \frac{8 \pi}{13}

\displaystyle a= \cos \frac{8 \pi}{13}

\displaystyle a= \frac{1}{2}\cos \frac{8 \pi}{13}

\displaystyle a= \sin \frac{8 \pi}{13}

\displaystyle a = 1

Correct answer:

\displaystyle a= \cos \frac{8 \pi}{13}

Explanation:

The transpose of a column matrix is the row matrix with the same entries, so

\displaystyle A = \begin{bmatrix} \cos \frac{4\pi }{13}\\ \\i \sin \frac{4\pi }{13}\end{bmatrix}, so \displaystyle A^{T} = \begin{bmatrix} \cos \frac{4\pi }{13} & i \sin \frac{4\pi }{13}\end{bmatrix}

Find \displaystyle A^{T}A by simply adding the products of corresponding entries:

\displaystyle A^{T}A= \begin{bmatrix} \cos \frac{4\pi }{13} & i \sin \frac{4\pi }{13}\end{bmatrix} \begin{bmatrix} \cos \frac{4\pi }{13}\\ \\i \sin \frac{4\pi }{13}\end{bmatrix}

\displaystyle \begin{bmatrix} \cos \frac{4\pi }{13} \cdot \cos \frac{4\pi }{13} + i \sin \frac{4\pi }{13} \cdot i \sin \frac{4\pi }{13} \end{bmatrix}

So 

\displaystyle a= \cos \frac{4\pi }{13} \cdot \cos \frac{4\pi }{13} + i \sin \frac{4\pi }{13} \cdot i \sin \frac{4\pi }{13}

\displaystyle = \cos ^{2}\frac{4\pi }{13} + i^{2} \sin^{2} \frac{4\pi }{13}

\displaystyle = \cos ^{2}\frac{4\pi }{13} + (-1) \sin^{2} \frac{4\pi }{13}

\displaystyle = \cos ^{2}\frac{4\pi }{13} -\sin^{2} \frac{4\pi }{13}

Apply the trigonometric identity

\displaystyle \cos ^{2} \theta -\sin^{2} \theta = \cos 2\theta

setting \displaystyle \theta =\frac{4\pi }{13}:

\displaystyle a= \cos \frac{8 \pi}{13}

Example Question #62 : Matrix Matrix Product

\displaystyle A is a \displaystyle 2 \times 3 matrix. \displaystyle B is a \displaystyle 3 \times 2 matrix. \displaystyle AB and \displaystyle BA are both nonsingular.

Which expression is defined?

Possible Answers:

\displaystyle (AB )^{T}+ (BA)^{-1}

\displaystyle (AB )^{-1}+BA

\displaystyle AB + B^{T}A^{T}

\displaystyle AB + B^{-1}A^{-1}

\displaystyle AB + (BA)^{T}

Correct answer:

\displaystyle AB + B^{T}A^{T}

Explanation:

\displaystyle A and \displaystyle B, being nonsquare matrices, cannot have inverses, so \displaystyle AB + B^{-1}A^{-1} can be eliminated as a choice.

The product of a \displaystyle m \times n matrix and a \displaystyle n \times p matrix is a \displaystyle m \times p matrix. Therefore:

\displaystyle AB is a \displaystyle 2 \times 2 matrix; \displaystyle (AB)^{T} and \displaystyle (AB)^{-1} are also \displaystyle 2 \times 2 matrices.

Similarly, 

\displaystyle BA\displaystyle (BA)^{T}, and \displaystyle (BA)^{-1} are \displaystyle 3 \times 3 matrices.

Matrices of different dimensions cannot be added, so  \displaystyle (AB )^{-1}+BA\displaystyle AB + (BA)^{T}, and \displaystyle (AB )^{T}+ (BA)^{-1} can be eliminated.

\displaystyle B^{T} and \displaystyle A^{T} are  \displaystyle 3 \times 2 and \displaystyle 2 \times 3 matrices, respectively. Therefore, \displaystyle B^{T}A^{T} is a \displaystyle 3 \times 3 matrix; \displaystyle AB + B^{T}A^{T}, the sum of \displaystyle 3 \times 3 matrices, is a defined expression.

Example Question #63 : Matrix Matrix Product

\displaystyle A = \begin{bmatrix} \sqrt{2 }\cos \frac{6\pi }{11}\\ \\i \end{bmatrix}

If \displaystyle A^{T}A = \begin{bmatrix} a \end{bmatrix}, then which expression is equal to \displaystyle a?

Possible Answers:

\displaystyle a = 1

\displaystyle a = \sin \frac{12\pi}{11}

\displaystyle a = 2 \sin \frac{12\pi}{11}

\displaystyle a = \cos \frac{12\pi}{11}

\displaystyle a = 2 \cos \frac{12\pi}{11}

Correct answer:

\displaystyle a = \cos \frac{12\pi}{11}

Explanation:

The transpose of a column matrix is the row matrix with the same entries, so if

\displaystyle A = \begin{bmatrix} \sqrt{2 }\cos \frac{6\pi }{11}\\ \\i \end{bmatrix},

then

\displaystyle A^{T} = \begin{bmatrix} \sqrt{2 }\cos\cos \frac{6\pi }{11} & i \end{bmatrix}

Find \displaystyle A^{T}A by simply adding the products of corresponding entries:

\displaystyle A^{T} A = \begin{bmatrix} \sqrt{2 }\cos \frac{6\pi }{11} \cdot \sqrt{2 } \cos \frac{6\pi }{11} + i \cdot i \end{bmatrix}

\displaystyle a = \sqrt{2 }\cos \frac{6\pi }{11} \cdot \sqrt{2 } \cos \frac{6\pi }{11} + i \cdot i

\displaystyle =2 \cos ^{2 } \frac{6\pi }{11} + i ^{2}

\displaystyle =2 \cos ^{2 } \frac{6\pi }{11} -1

Apply the trigonometric identity

\displaystyle 2 \cos^{2} \theta -1 = \cos 2\theta

Setting \displaystyle \theta = \frac{6\pi }{11},

\displaystyle a = \cos \frac{12\pi}{11}.

Example Question #61 : Matrix Matrix Product

\displaystyle A= \begin{bmatrix} \cos \frac{\pi }{36} + i \sin \frac{\pi }{36} & 0 \\ 0 & \cos \frac{\pi }{18} + i \sin \frac{\pi }{18} \end{bmatrix}

Find \displaystyle A^{6}.

Possible Answers:

\displaystyle \begin{bmatrix} \frac{ \sqrt{3}}{2}+\frac{1}{2} i& 0 \\ 0 &\frac{1}{2} -\frac{ \sqrt{3}}{2} i \end{bmatrix}

None of the other choices gives the correct response.

\displaystyle \begin{bmatrix} \frac{ \sqrt{3}}{2}-\frac{1}{2} i& 0 \\ 0 &\frac{1}{2} +\frac{ \sqrt{3}}{2} i \end{bmatrix}

\displaystyle \begin{bmatrix} \frac{1}{2} +\frac{ \sqrt{3}}{2} i & 0 \\ 0 & \frac{ \sqrt{3}}{2}+\frac{1}{2} i \end{bmatrix}

\displaystyle \begin{bmatrix} \frac{1}{2} -\frac{ \sqrt{3}}{2} i & 0 \\ 0 & \frac{ \sqrt{3}}{2}-\frac{1}{2} i \end{bmatrix}

Correct answer:

None of the other choices gives the correct response.

Explanation:

\displaystyle A is a diagonal matrix. The product of two diagonal matrices can be found by multiplying elements in corresponding diagonal positions; the idea can be extended to powers of matrices, so 

\displaystyle A^{6}= \begin{bmatrix} \left (\cos \frac{\pi }{36} + i \sin \frac{\pi }{36} \right ) ^{6}& 0 \\ 0 & \left (\cos \frac{\pi }{18} + i \sin \frac{\pi }{18} \right )^{6} \end{bmatrix}

By DeMoivre's Theorem,

\displaystyle \left ( \cos \theta + i \sin \theta \right )^{n} = \cos n \theta + i \sin n \theta

Set \displaystyle n = 6 and \displaystyle \theta = \frac{\pi }{36 } in the upper left element:

\displaystyle \left (\cos \frac{\pi }{36} + i \sin \frac{\pi }{36} \right ) ^{6}

\displaystyle = \cos \left ( 6 \cdot \frac{\pi}{36}\right )+ i \sin\left ( 6 \cdot \frac{\pi}{36}\right )

\displaystyle = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}

\displaystyle =\frac{ \sqrt{3}}{2}+\frac{1}{2} i

Set \displaystyle n = 6 and \displaystyle \theta = \frac{\pi }{18} in the lower right element:

\displaystyle \left (\cos \frac{\pi }{18} + i \sin \frac{\pi }{18} \right ) ^{6}

\displaystyle = \cos \left ( 6 \cdot \frac{\pi}{18}\right )+ i \sin\left ( 6 \cdot \frac{\pi}{18}\right )

\displaystyle = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}

\displaystyle =\frac{1}{2} +\frac{ \sqrt{3}}{2} i

Therefore,

\displaystyle A^{6}= \begin{bmatrix} \frac{ \sqrt{3}}{2}+\frac{1}{2} i& 0 \\ 0 &\frac{1}{2} +\frac{ \sqrt{3}}{2} i \end{bmatrix},

which is not among the choices.

Example Question #65 : Matrix Matrix Product

\displaystyle A = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix}

Which of the following is equal to \displaystyle A^{4}?

Possible Answers:

\displaystyle \begin{bmatrix}-50 & -42 \\ 63 & -29\end{bmatrix}

\displaystyle \begin{bmatrix}-50 & 42 \\ -63 & -29\end{bmatrix}

None of the other choices gives the correct response.

\displaystyle \begin{bmatrix}-50 & -63 \\ 42& -29\end{bmatrix}

\displaystyle \begin{bmatrix}-50 & 63 \\ -42& -29\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}-50 & -63 \\ 42& -29\end{bmatrix}

Explanation:

An easy way to find this is to note that \displaystyle A^{4} = (A^{2} )^{2}; therefore, we can find \displaystyle A^{4} by squaring \displaystyle A and squaring the result. 

Matrix multiplication is worked row by column - each row in the former matrix is multiplied by each column in the latter by adding the products of elements in corresponding positions, as follows:

\displaystyle A^{2} = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix}

\displaystyle = \begin{bmatrix} 2(2)+3(-2) & 2(3)+3(1) \\ -2(2)+1(-2) & -2(3) +1(1)\end{bmatrix}

\displaystyle = \begin{bmatrix}-2 & 9 \\-6& -5\end{bmatrix}

Now square this:

\displaystyle A^{4} = (A^{2} )^{2}= \begin{bmatrix}-2 & 9 \\-6& -5\end{bmatrix} \begin{bmatrix}-2 & 9 \\-6& -5\end{bmatrix}

\displaystyle = \begin{bmatrix}-2(-2) + 9(-6) & -2(9) + 9(-5) \\ -6(-2) + (-5)(-6) & -6(9) + (-5)(-5) \end{bmatrix}

\displaystyle = \begin{bmatrix}-50 & -63 \\ 42& -29\end{bmatrix}

Example Question #61 : Matrix Matrix Product

\displaystyle A = \begin{bmatrix} \cos \frac{ \pi}{7} - i \sin \frac{ \pi}{7} & 0 \\ 0 & \cos \frac{ \pi}{5} - i \sin \frac{ \pi}{5} \end{bmatrix}

Evaluate \displaystyle A^{35}.

Possible Answers:

\displaystyle \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}

None of the other choices gives the correct response.

\displaystyle \begin{bmatrix}-1 & 0 \\ 0 & 1 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

\displaystyle \begin{bmatrix}-1 & 0 \\ 0 & -1 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}-1 & 0 \\ 0 & -1 \end{bmatrix}

Explanation:

\displaystyle A is a diagonal matrix, so it can be raised to a power by raising the individual entries to that power:

\displaystyle A^{35} = \begin{bmatrix} \left (\cos \frac{ \pi}{7} - i \sin \frac{ \pi}{7} \right ) ^{35}& 0 \\ 0 & \left (\cos \frac{ \pi}{5} - i \sin \frac{ \pi}{5} \right ) ^{35}\end{bmatrix}

By DeMoivre's Theorem, 

\displaystyle (\cos \theta + i \sin \theta )^{n} = \cos n\theta + i \sin n \theta.

We will need to rewrite the entries in the matrix as sums, not differences. We can do this by noting that the cosine and sine functions are even and odd, respectively, so \displaystyle A^{35} can be rewritten as

\displaystyle A^{35} = \begin{bmatrix} \left (\cos\left ( -\frac{ \pi}{7} \right )+ i \sin\left ( -\frac{ \pi}{7} \right )\right ) ^{35}& 0 \\ 0 & \left (\cos\left ( -\frac{ \pi}{5} \right )+ i \sin\left ( -\frac{ \pi}{5} \right )\right ) ^{35}\end{bmatrix}

Applying DeMoivre's Theorem,

\displaystyle A^{35} = \begin{bmatrix} \cos \left (35\cdot \left ( -\frac{ \pi}{7} \right ) \right )+ i \sin \left (35\cdot \left ( -\frac{ \pi}{7} \right ) \right ) & 0 \\ 0 & \cos \left (35\cdot \left ( -\frac{ \pi}{5} \right ) \right )+ i \sin \left (35\cdot \left ( -\frac{ \pi}{5} \right ) \right ) \end{bmatrix}

\displaystyle A^{35} = \begin{bmatrix} \cos \left (-5 \pi \right )+ i \sin \left (-5 \pi \right ) & 0 \\ 0 &\cos \left (-7\pi \right )+ i \sin \left (-7 \pi \right ) \end{bmatrix}

The coterminal angle for both \displaystyle -5 \pi and \displaystyle -7\pi is \displaystyle \pi, so

\displaystyle A^{35} = \begin{bmatrix} \cos \pi + i \sin \pi & 0 \\ 0 & \cos \pi + i \sin \pi \end{bmatrix}

\displaystyle A^{35} = \begin{bmatrix}-1 + i (0)& 0 \\ 0 & -1 + i (0) \end{bmatrix}

\displaystyle A^{35} = \begin{bmatrix}-1 & 0 \\ 0 & -1 \end{bmatrix}

 

Example Question #67 : Matrix Matrix Product

\displaystyle A is a column matrix with seven entries. Which of the following is true of \displaystyle A^{T}A ?

Possible Answers:

\displaystyle A^{T}A is a matrix with a single entry.

\displaystyle A^{T}A is a row matrix with seven entries.

\displaystyle A^{T}A is a scalar.

\displaystyle A^{T}A is a column matrix with seven entries.

\displaystyle A^{T}A is a \displaystyle 7 \times 7 matrix.

Correct answer:

\displaystyle A^{T}A is a matrix with a single entry.

Explanation:

\displaystyle A, a column matrix with ten entries, is a \displaystyle 7 \times 1 matrix; \displaystyle A^{T}, its transpose, is a \displaystyle 1 \times 7 matrix. 

If \displaystyle X and \displaystyle Y are \displaystyle m \times n and \displaystyle n \times p matrices, respectively, then the product \displaystyle XY is a \displaystyle m \times p matrix. Therefore, \displaystyle A^{T}A is a \displaystyle 1 \times 1 matrix - a matrix with a single entry.

Example Question #68 : Matrix Matrix Product

\displaystyle A is a column matrix with ten entries. Which of the following is true of \displaystyle AA^{T} ?

Possible Answers:

\displaystyle AA^{T} is a row matrix with ten elements.

\displaystyle AA^{T} is a matrix with a single entry.

\displaystyle AA^{T} is a \displaystyle 10 \times 10 matrix.

\displaystyle AA^{T} is a column matrix with ten elements.

\displaystyle AA^{T} is a scalar.

Correct answer:

\displaystyle AA^{T} is a \displaystyle 10 \times 10 matrix.

Explanation:

\displaystyle A, a column matrix with ten entries, is a \displaystyle 10 \times 1 matrix; \displaystyle A^{T}, its transpose, is a \displaystyle 1 \times 10 matrix. 

If \displaystyle X and \displaystyle Y are \displaystyle m \times n and \displaystyle n \times p matrices, respectively, then the product \displaystyle XY is a \displaystyle m \times p matrix. Therefore, \displaystyle AA^{T} is a \displaystyle 10 \times 10 matrix.

Example Question #69 : Matrix Matrix Product

\displaystyle A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

\displaystyle B= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &-2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

\displaystyle C = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 1 & 3 & -3 \\ 1 & -1 & -2 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}

Which of the following is equal to \displaystyle ABC ?

Possible Answers:

\displaystyle \begin{bmatrix} 1 & -1 & -1 & -1 \\ 2 & -9 & 3 & -3 \\ 1 & 7 & -2 & 2 \\ 1 & -8 & 1 & 2 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 1 & -1 & -1 \\ -6 & -3 & -9 &9 \\ -2 &3 & 4 & -4 \\ 1 & 2 & 1 & 2 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 1 & -1 & -1 \\ -6 & -3 & -9 & 9 \\ 13 & 5 &16 & -16 \\ 1 & 2 & 1 & 2 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 1 & -1 & -1 \\ -6 & -3 & -9 & 9 \\ -3 & -3 & -8 &8 \\ 1 & 2 & 1 & 2 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & -9 & -1 & -1 \\ 2 & 15 & 3 & -3 \\ 1 &-9 & -2 & 2 \\ 1 & 0 & 1 & 2 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} 1 & 1 & -1 & -1 \\ -6 & -3 & -9 & 9 \\ -3 & -3 & -8 &8 \\ 1 & 2 & 1 & 2 \end{bmatrix}

Explanation:

\displaystyle A and \displaystyle B are both elementary matrices, in that each can be formed from the (four-by-four) identity matrix \displaystyle I  by a single row operation.  

Since \displaystyle A differs from \displaystyle I in that the entry \displaystyle -3 is in Row 2, Column 2, the row operation is \displaystyle -3R2 \rightarrow R2. Since \displaystyle B differs from \displaystyle I in that entry \displaystyle -2 is in Row 3, Column 2, the row operation is \displaystyle -2R2+R3 \rightarrow R3.

Premultiplying a matrix by an elementary matrix has the effect of performing that row operation on the matrix. Looking at \displaystyle ABC as \displaystyle A(BC):

\displaystyle C = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 1 & 3 & -3 \\ 1 & -1 & -2 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}

Premultiply \displaystyle C by \displaystyle B by performing the operation \displaystyle -2R2+R3 \rightarrow R3:

\displaystyle BC = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 1 & 3 & -3 \\ -3 & -3 & -8 &8 \\ 1 & 2 & 1 & 2 \end{bmatrix}

Premultiply \displaystyle BC by \displaystyle A by performing the operation \displaystyle -3R2 \rightarrow R2:

\displaystyle ABC = A (BC )= \begin{bmatrix} 1 & 1 & -1 & -1 \\ -6 & -3 & -9 & 9 \\ -3 & -3 & -8 &8 \\ 1 & 2 & 1 & 2 \end{bmatrix}

This is the correct product.

Example Question #70 : Matrix Matrix Product

\displaystyle I refers to the \displaystyle 2 \times 2 identity matrix.

\displaystyle A^{7} = I. Which of the following matrices could be equal to \displaystyle A ?

Possible Answers:

None of the other responses gives a correct answer.

\displaystyle A = \begin{bmatrix} \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} & 0 \\ 0 & \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} \end{bmatrix}

\displaystyle A = \begin{bmatrix} \cos \frac{\pi}{14} + i \sin \frac{ \pi}{14} & 0 \\ 0 & \cos \frac{13\pi}{14} + i \sin \frac{13 \pi }{14} \end{bmatrix}

\displaystyle A = \begin{bmatrix} \cos \frac{5\pi}{14} + i \sin \frac{5 \pi}{14} & 0 \\ 0 & \cos \frac{9\pi}{14} + i \sin \frac{9 \pi }{14} \end{bmatrix}

\displaystyle A = \begin{bmatrix} \cos \frac{ \pi}{7} + i \sin \frac{ \pi}{7} & 0 \\ 0 & \cos \frac{6\pi}{7} + i \sin \frac{6\pi}{7} \end{bmatrix}

Correct answer:

\displaystyle A = \begin{bmatrix} \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} & 0 \\ 0 & \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} \end{bmatrix}

Explanation:

All of the matrices are diagonal, so the seventh power of each can be determined by simply taking the seventh power of the individual entries in the main diagonal. Also, note that each entry in each choice is of the form 

\displaystyle \cos \theta + i \sin \theta.

By DeMoivre's Theorem, for any real \displaystyle n,

\displaystyle (\cos \theta + i \sin \theta ) ^{n} = \cos n \theta + i \sin n \theta

Combining these ideas, we can take the seventh power of each matrix and determine which exponentiation yields the identity.

If 

\displaystyle A = \begin{bmatrix} \cos \frac{5\pi}{14} + i \sin \frac{5 \pi}{14} & 0 \\ 0 & \cos \frac{9\pi}{14} + i \sin \frac{9 \pi }{14} \end{bmatrix},

then 

\displaystyle A^{7} = \begin{bmatrix}( \cos \frac{5\pi}{14} + i \sin \frac{5 \pi}{14} )^{7}& 0 \\ 0 & (\cos \frac{9\pi}{14} + i \sin \frac{9 \pi }{14} )^{7}\end{bmatrix}

\displaystyle = \begin{bmatrix}\cos \frac{5\pi}{2} + i \sin \frac{5 \pi}{2} & 0 \\ 0 & \cos \frac{9\pi}{2} + i \sin \frac{9 \pi }{2} \end{bmatrix}

\displaystyle = \begin{bmatrix}\cos \frac{\pi}{2} + i \sin \frac{ \pi}{2} & 0 \\ 0 & \cos \frac{\pi}{2} + i \sin \frac{ \pi }{2} \end{bmatrix}

\displaystyle = \begin{bmatrix}0 + i (1)& 0 \\ 0 & 0 + i (1) \end{bmatrix}

\displaystyle = \begin{bmatrix}i & 0 \\ 0 & i \end{bmatrix}

\displaystyle \ne I

 

If 

\displaystyle A = \begin{bmatrix} \cos \frac{\pi}{14} + i \sin \frac{ \pi}{14} & 0 \\ 0 & \cos \frac{13\pi}{14} + i \sin \frac{13 \pi }{14} \end{bmatrix},

then 

\displaystyle A^{7} = \begin{bmatrix}( \cos \frac{\pi}{14} + i \sin \frac{ \pi}{14} )^{7}& 0 \\ 0 &( \cos \frac{13\pi}{14} + i \sin \frac{13 \pi }{14} )^{7}\end{bmatrix}

\displaystyle = \begin{bmatrix} \cos \frac{\pi}{2} + i \sin \frac{ \pi}{2} & 0 \\ 0 & \cos \frac{13\pi}{2} + i \sin \frac{13 \pi }{2} \end{bmatrix}

\displaystyle = \begin{bmatrix} \cos \frac{\pi}{2} + i \sin \frac{ \pi}{2} & 0 \\ 0 & \cos \frac{ \pi}{2} + i \sin \frac{ \pi }{2} \end{bmatrix}

\displaystyle = \begin{bmatrix}0 + i (1)& 0 \\ 0 & 0 + i (1) \end{bmatrix}

\displaystyle = \begin{bmatrix}i & 0 \\ 0 & i \end{bmatrix}

\displaystyle \ne I

 

If 

\displaystyle A = \begin{bmatrix} \cos \frac{ \pi}{7} + i \sin \frac{ \pi}{7} & 0 \\ 0 & \cos \frac{6\pi}{7} + i \sin \frac{6\pi}{7} \end{bmatrix},

then 

\displaystyle A^{7} = \begin{bmatrix} (\cos \frac{ \pi}{7} + i \sin \frac{ \pi}{7} )^{7} & 0 \\ 0 &( \cos \frac{6\pi}{7} + i \sin \frac{6\pi}{7} )^{7} \end{bmatrix}

\displaystyle = \begin{bmatrix} \cos \pi + i \sin \pi & 0 \\ 0 & \cos 6 \pi + i \sin 6 \pi \end{bmatrix}

\displaystyle = \begin{bmatrix} \cos \pi + i \sin \pi & 0 \\ 0 & \cos 0 + i \sin 0 \end{bmatrix}

\displaystyle = \begin{bmatrix} -1 + i (0)& 0 \\ 0 & 1 + i (0) \end{bmatrix}

\displaystyle = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}

\displaystyle \ne I

 

If 

\displaystyle A = \begin{bmatrix} \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} & 0 \\ 0 & \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} \end{bmatrix},

then 

\displaystyle A^{7} = \begin{bmatrix} (\cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7})^{7} & 0 \\ 0 &( \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} )^{7} \end{bmatrix}

\displaystyle A^{7} = \begin{bmatrix} \cos 2 \pi + i \sin 2 \pi & 0 \\ 0 & \cos 4\pi + i \sin4\pi \end{bmatrix}

\displaystyle = \begin{bmatrix} \cos 0 + i \sin 0 & 0 \\ 0 & \cos 0 + i \sin 0 \end{bmatrix}

\displaystyle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

\displaystyle = I

 

\displaystyle \begin{bmatrix} \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} & 0 \\ 0 & \cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} \end{bmatrix} is the only possible matrix value of \displaystyle A among the choices.

Learning Tools by Varsity Tutors