Linear Algebra : The Identity Matrix and Diagonal Matrices

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : The Identity Matrix And Diagonal Matrices

Which of the following is an identity matrix?

Possible Answers:

All of these are valid identitiy matricies.

\(\displaystyle \begin{bmatrix} 1& 0\\ 1&1 \\ 0&1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0& 0&1 \\ 0& 1 & 0\\ 1& 0&0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 1& 0\\ 0&0 &1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 0& 1 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 1& 0\\ 0&0 &1 \end{bmatrix}\)

Explanation:

An identity matrix is a square matrix in which all diagonal elements are 1 and all non-diagonal elements are 0.  The only square matricies above are: 

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 1& 0\\ 0&0 &1 \end{bmatrix} \textup{and}\)  \(\displaystyle \begin{bmatrix} 0& 0&1 \\ 0& 1 & 0\\ 1& 0&0 \end{bmatrix}\) 

The former of these two matricies is the only one fitting the critera of diagonal elements (diagonal meaning from top left to bottom right) being 1 and non-diagonal elements being 0.  

Example Question #22 : The Identity Matrix And Diagonal Matrices

Which of the following is a diagonal matrix?

Possible Answers:

\(\displaystyle \begin{bmatrix} 1&0 &2 \\ 0& 3& 0\\ 4& 0& 5 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0& 1& 2\\ 3& 0& 4\\ 5&6 & 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1& 2&0 &0 \\ 0& 0& 3& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0& 0& 1\\ 0& 2& 0\\ 3&0 & 0 \end{bmatrix}\,\)

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 2& 0\\ 0&0 & 3 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 2& 0\\ 0&0 & 3 \end{bmatrix}\)

Explanation:

A diagonal matrix is a matrix in which all elements except diagonal elements are zero.  A diagonal element of a matrix M is the element Mij for which i=j.  Here, i refers to the number of columns and j is the number of rows.  The only matrix that fufills this definition is:

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 2& 0\\ 0&0 & 3 \end{bmatrix}\)

Example Question #23 : The Identity Matrix And Diagonal Matrices

Which of the following is a diagonal matrix?

Possible Answers:

\(\displaystyle \begin{bmatrix} 3&0 &0 &0 \\ 0 & 7& 0& 0\\ 0 & 0& 1& 9 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 2&0 &0 &0 \\ 0 & 4& 0& 0\\ 0 & 0& 7& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0&9 &0 &0 \\ 0 & 0& 3& 0\\ 0 & 0& 0& 1 \end{bmatrix}\:\)

\(\displaystyle \begin{bmatrix} 3&0 &0 &0 \\ 0 & 7& 5& 0\\ 0 & 0& 0& 6 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4&0 &0 &0 \\ 0 & 5& 0& 0\\ 0 & 0& 0& 2 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 2&0 &0 &0 \\ 0 & 4& 0& 0\\ 0 & 0& 7& 0 \end{bmatrix}\)

Explanation:

A diagonal matrix is a matrix in which all elements except diagonal elements are zero.  A diagonal element of a matrix M is the element Mij for which i=j.  Here, i refers to the number of columns and j is the number of rows.  The matrix doesn't necessarily have to be a square matrix; as long as elements not in the form Mii are zero, the matrix is diagnoal.  The only matrix that fufills this definition is:

\(\displaystyle \begin{bmatrix} 2&0 &0 &0 \\ 0 & 4& 0& 0\\ 0 & 0& 7& 0 \end{bmatrix}\)

Learning Tools by Varsity Tutors