MAP 5th Grade Math : Operations and Algebraic Thinking

Study concepts, example questions & explanations for MAP 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Map 5th Grade Math

Complete the table below using the equation \displaystyle y=10x+4

Screen shot 2015 07 27 at 8.52.55 am

Possible Answers:

\displaystyle 174

\displaystyle 162

\displaystyle 164

\displaystyle 172

Correct answer:

\displaystyle 164

Explanation:

We need to use both the equation and the table to answer this question. We are looking for the corresponding \displaystyle y value for \displaystyle x=16. We can plug \displaystyle 16 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=10(16)+4

\displaystyle y=160+4

\displaystyle y=164

Example Question #1 : Operations And Algebraic Thinking

Sally drank \displaystyle \frac{1}{12} of the milk and Sam drank \displaystyle \frac{2}{3}. What fraction of the milk did they drink? 

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{4}

\displaystyle \frac{3}{15}

\displaystyle \frac{5}{7}

Correct answer:

\displaystyle \frac{3}{4}

Explanation:

\displaystyle \frac{1}{12}+\frac{2}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{2}{3}\times\frac{4}{4}=\frac{8}{12}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{1}{12}+\frac{8}{12}=\frac{9}{12}

\displaystyle \frac{9}{12} can be reduced by dividing \displaystyle 3 by both sides. 

\displaystyle \frac{9}{12}\div \frac{3}{3}=\frac{3}{4}

Example Question #2 : Operations And Algebraic Thinking

David ate \displaystyle \frac{3}{12} of the pizza and Alison ate \displaystyle \frac{1}{3} of the pizza. How much of the pizza did they eat? 

Possible Answers:

\displaystyle \frac{6}{12}

\displaystyle \frac{7}{12}

\displaystyle \frac{4}{15}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{7}{12}

Explanation:

\displaystyle \frac{3}{12}+\frac{1}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{3}\times\frac{4}{4}=\frac{4}{12}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{3}{12}+\frac{4}{12}=\frac{7}{12}

Learning Tools by Varsity Tutors