MCAT Physical : Enthalpy

Study concepts, example questions & explanations for MCAT Physical

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Enthalpy

The formation of nitrous oxide is a 2-step process.

\(\displaystyle N_{2} + O_{2} \rightarrow 2NO (step 1)\)

\(\displaystyle 2NO + O_{2} \rightarrow 2NO_{2} (step 2)\)

\(\displaystyle N_{2} + 2O_{2} \rightarrow 2NO_{2} (overall reaction)\)

The overall enthalpy of the reaction is +68kJ.

If the enthalpy change of step 1 is 180kJ, what is the enthalpy change of step 2?

Possible Answers:

248kJ

–112kJ

112kJ

More information is needed to answer the question.

Correct answer:

–112kJ

Explanation:

Hess's law states that the enthalpies of the steps in an overall reaction can be added in order to find the overall enthalpy. Since the overall enthalpy of the reaction is +68kJ, we can use the following equation to find step 2's enthalpy.

\(\displaystyle Step 1 \Delta H + step 2 \Delta H = overall reaction \Delta H\)

\(\displaystyle 180kJ + step 2 \Delta H = +68kJ\)

\(\displaystyle Step 2 \Delta H = -112kJ.\)

Example Question #2 : Enthalpy

Consider the following processes:

1)  \(\displaystyle A \rightarrow 2B + C + \Delta H_{1}\)

2)  \(\displaystyle D\rightarrow B + C + \Delta H_{2}\)

3)  \(\displaystyle D \rightarrow 2E + \Delta H_{3}\)

Which for the following expresses \(\displaystyle \Delta H\) for the process \(\displaystyle A + C \rightarrow 4E\) ?

Possible Answers:

\(\displaystyle \Delta H_{1} + \Delta H_{2} - 2\Delta H_{3}\)

\(\displaystyle \Delta H_{1} - 2\Delta H_{2} + 2\Delta H_{3}\)

\(\displaystyle \Delta H_{1} + 2\Delta H_{2} + 2\Delta H_{3}\)

\(\displaystyle \Delta H_{1} + 2\Delta H_{2} - 2\Delta H_{3}\)

\(\displaystyle \Delta H_{1} + 2\Delta H_{3}\)

Correct answer:

\(\displaystyle \Delta H_{1} - 2\Delta H_{2} + 2\Delta H_{3}\)

Explanation:

1)  \(\displaystyle A \rightarrow 2B + C + \Delta H_{1}\)

2)  \(\displaystyle D\rightarrow B + C + \Delta H_{2}\)

3)  \(\displaystyle D \rightarrow 2E + \Delta H_{3}\)

\(\displaystyle A + C \rightarrow 4E\)

We need to add the given processes in such a way that leaves \(\displaystyle \small A+C\) on the left side, and \(\displaystyle \small 4E\) on the right. 

Since there are no \(\displaystyle \small B's\) in the final equation, begin by combining processes 1 and 2 to eliminate.

First, reverse process 2 and multiply by two:

2a) \(\displaystyle 2 (B + C + \Delta H_{2} \rightarrow D)\)

2a) \(\displaystyle 2B + 2C + 2\Delta H_{2} \rightarrow 2 D\)

2a) \(\displaystyle 2B + 2C \rightarrow 2 D - 2\Delta H_{2}\)

Add this result to process 1.

1) \(\displaystyle A \rightarrow 2B + C +\Delta H_{1}\)

2a) \(\displaystyle 2B + 2C \rightarrow 2D -2\Delta H_{2}\)

1+2a) \(\displaystyle A + C \rightarrow 2D + \Delta H_{1} -2\Delta H_{2}\)

Now we need to combine with process 3 to eliminate the \(\displaystyle \small D's\). Start by multiplying process 3 by two.

3a) \(\displaystyle 2(D \rightarrow 2E + \Delta H_{3})\)

3a) \(\displaystyle 2D \rightarrow 4E + 2\Delta H_{3}\)

Add this to the combined result from processes 1 and 2.

1+2a) \(\displaystyle A + C \rightarrow 2D + \Delta H_{1} -2\Delta H_{2}\)

3a) \(\displaystyle 2D \rightarrow 4E + 2\Delta H_{3}\)

1+2a+3a) \(\displaystyle A + C \rightarrow 4E +\Delta H_{1} - 2\Delta H_{2} + 2\Delta H_{3}\)

This gives our final combination. The elemental reaction is \(\displaystyle A + C \rightarrow 4E\), and the enthalpy of the process is \(\displaystyle \small \Delta H_1-2\Delta H_2+2\Delta H_3\).

Learning Tools by Varsity Tutors