New SAT Math - Calculator : New SAT

Study concepts, example questions & explanations for New SAT Math - Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Radians And Conversions

Give \(\displaystyle x\) in degrees:

 

\(\displaystyle \frac{\frac{\pi}{2}-x}{\frac{\pi}{2}+x}=\frac{1}{2}\)

Possible Answers:

\(\displaystyle x=60^{\circ}\)

\(\displaystyle x=90^{\circ}\)

\(\displaystyle x=30^{\circ}\)

\(\displaystyle x=36^{\circ}\)

\(\displaystyle x=40^{\circ}\)

Correct answer:

\(\displaystyle x=30^{\circ}\)

Explanation:

First we can find \(\displaystyle x\) in radians:

 

\(\displaystyle \frac{\frac{\pi}{2}-x}{\frac{\pi}{2}+x}=\frac{1}{2}\Rightarrow 2(\frac{\pi}{2}-x)=1(\frac{\pi}{2}+x)\)

\(\displaystyle \Rightarrow \pi-2x=\frac{\pi}{2}+x\Rightarrow \pi-\frac{\pi}{2}=3x\)

\(\displaystyle \Rightarrow 3x=\frac{\pi}{2}\Rightarrow x=\frac{\pi}{6}\)

To change radians to degrees we need to multiply radians by \(\displaystyle \frac{180^{\circ}}{\pi}\). So we can write:

 

\(\displaystyle x=\frac{\pi}{6}\Rightarrow x=\frac{\pi}{6}\times \frac{180^{\circ}}{\pi}=30^{\circ}\)

Example Question #3 : Radians

Convert the angle \(\displaystyle \frac{7\pi }{3}\) into degrees.

Possible Answers:

\(\displaystyle 420^{\circ}\)

\(\displaystyle 315^{\circ}\)

\(\displaystyle 840^{\circ}\)

\(\displaystyle 500^{\circ}\)

\(\displaystyle 210^{\circ}\)

Correct answer:

\(\displaystyle 420^{\circ}\)

Explanation:

To convert radians to degrees, use the conversion \(\displaystyle \frac{180^{\circ}}{\pi }\).

In this case:

\(\displaystyle (\frac{7\pi }{3})*(\frac{180^{\circ}}{\pi }) = 420^{\circ}\)

Example Question #21 : Unit Circle And Radians

How many radians are in \(\displaystyle 300^\circ\)?

Possible Answers:

\(\displaystyle \frac{5\pi}{3}\)

\(\displaystyle \frac{7\pi}{3}\)

\(\displaystyle \frac{3\pi}{5}\)

\(\displaystyle \pi\sqrt{3}\)

\(\displaystyle \frac{2\pi}{3}\)

Correct answer:

\(\displaystyle \frac{5\pi}{3}\)

Explanation:

Since\(\displaystyle 180^\circ=\pi\ \text{radians}\), we can solve by setting up a proportion:

\(\displaystyle \frac{300^\circ}{x}=\frac{180^\circ}{\pi}\)

Cross-multiply and solve.

\(\displaystyle 300^\circ*\pi=180^\circ*x\)

\(\displaystyle \frac{300^\circ}{180^\circ}\pi=x\)

\(\displaystyle \frac{5\pi}{3}=x\)

Example Question #4 : Circles

How many degrees are in \(\displaystyle \frac{5\pi}{6}\) radians?

Possible Answers:

\(\displaystyle 180^\circ\)

\(\displaystyle 150^\circ\)

\(\displaystyle 210^\circ\)

\(\displaystyle 130^\circ\)

\(\displaystyle 160^\circ\)

Correct answer:

\(\displaystyle 150^\circ\)

Explanation:

Since \(\displaystyle 180^\circ=\pi\ \text{radians}\), we can solve by setting up a proportion:

\(\displaystyle \frac{x}{\frac{5\pi}{6}}=\frac{180^\circ}{\pi}\)

Cross multiply and solve.

\(\displaystyle 180^\circ*\frac{5\pi}{6}=x*\pi\)

\(\displaystyle \frac{900\pi}{6}=x*\pi\)

\(\displaystyle 150\pi=x*\pi\)

\(\displaystyle \frac{150\pi}{\pi}=x\)

\(\displaystyle 150^\circ=x\)

Example Question #571 : New Sat

Change \(\displaystyle \frac{\pi}{5}\) angle to degrees.

Possible Answers:

\(\displaystyle 34^{\circ}\)

\(\displaystyle 32^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 36^{\circ}\)

\(\displaystyle 30^{\circ}\)

Correct answer:

\(\displaystyle 36^{\circ}\)

Explanation:

In order to change radians to degrees, we need to multiply the radian agle measure by \(\displaystyle \frac{180^{\circ}}{\pi}\).

 

\(\displaystyle \frac{\pi}{5}\times \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{5}=36^{\circ}\)

Example Question #12 : Radians

An angle of 40 radians is equal to how many degrees?

Possible Answers:

\(\displaystyle \frac{3600^{\circ}}{\pi}\)

\(\displaystyle \frac{5400^{\circ}}{\pi}\)

\(\displaystyle \frac{720^{\circ}}{\pi}\)

\(\displaystyle \frac{7200^{\circ}}{\pi}\)

\(\displaystyle \frac{7000^{\circ}}{\pi}\)

Correct answer:

\(\displaystyle \frac{7200^{\circ}}{\pi}\)

Explanation:

We know that one radian is equal to \(\displaystyle \frac{180^{\circ}}{\pi}\), so in order to change \(\displaystyle 40\) radians to degrees we need to multiply \(\displaystyle 40\) by \(\displaystyle \frac{180^{\circ}}{\pi}\).

 

\(\displaystyle 40\times \frac{180^{\circ}}{\pi}=\frac{7200^{\circ}}{\pi}\)

Example Question #572 : New Sat

Change \(\displaystyle \frac{17\pi}{5}\) angle to degrees.

Possible Answers:

\(\displaystyle 412^{\circ}\)

\(\displaystyle 512^{\circ}\)

\(\displaystyle 620^{\circ}\)

\(\displaystyle 612^{\circ}\)

\(\displaystyle 712^{\circ}\)

Correct answer:

\(\displaystyle 612^{\circ}\)

Explanation:

In order to change radians to degrees we need to multiply the radians by \(\displaystyle \frac{180^{\circ}}{\pi}\).

 

\(\displaystyle \frac{17\pi}{5}\times \frac{180^{\circ}}{\pi}=\frac{17\times 180^{\circ}}{5}=612^{\circ}\)

Example Question #573 : New Sat

Change \(\displaystyle 75^{\circ}\)  to radians.

Possible Answers:

\(\displaystyle \frac{2\pi}{3}\)

\(\displaystyle \frac{\pi}{12}\)

\(\displaystyle \frac{\pi}{2}\)

\(\displaystyle \frac{7\pi}{12}\)

\(\displaystyle \frac{5\pi}{12}\)

Correct answer:

\(\displaystyle \frac{5\pi}{12}\)

Explanation:

In order to change degrees to radians we need to multiply the degrees by \(\displaystyle \frac{\pi}{180^{\circ}}\).

 

\(\displaystyle 75^{\circ}\times \frac{\pi}{180^{\circ}}=\frac{5\pi}{12}\)

Example Question #24 : Unit Circle And Radians

Change the following expression to degrees:

 

\(\displaystyle \frac{\frac{\pi}{3}-\frac{\pi}{6}}{\frac{1}{3}+\frac{1}{6}}\)

Possible Answers:

\(\displaystyle 75^{\circ}\)

\(\displaystyle 120^{\circ}\)

\(\displaystyle 160^{\circ}\)

\(\displaystyle 60^{\circ}\)

\(\displaystyle 90^{\circ}\)

Correct answer:

\(\displaystyle 60^{\circ}\)

Explanation:

First we need to simplify the expression:

 

\(\displaystyle \frac{\frac{\pi}{3}-\frac{\pi}{6}}{\frac{1}{3}+\frac{1}{6}}=\frac{\frac{2\pi-\pi}{6}}{\frac{2+1}{6}}=\frac{\pi}{3}\)

 

Now multiply by \(\displaystyle \frac{180^{\circ}}{\pi}\):

 

\(\displaystyle \frac{\pi}{3}\times \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{3}=60^{\circ}\)

Example Question #25 : Unit Circle And Radians

Change the following expression to degrees:

 

\(\displaystyle {\frac{\pi}{4}-\frac{\pi}{12}}\)

Possible Answers:

\(\displaystyle 75^{\circ}\)

\(\displaystyle 60^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 90^{\circ}\)

\(\displaystyle 30^{\circ}\)

Correct answer:

\(\displaystyle 30^{\circ}\)

Explanation:

First we need to simplify the expression:

 

\(\displaystyle {\frac{\pi}{4}-\frac{\pi}{12}}=\frac{3\pi-\pi}{12}=\frac{2\pi}{12}=\frac{\pi}{6}\)

 

Then multiply the radians by \(\displaystyle \frac{180^{\circ}}{\pi}\):

 

\(\displaystyle \frac{\pi}{6}\times \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{6}=30^{\circ}\)

Learning Tools by Varsity Tutors