Precalculus : Inverse Functions

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Find The Inverse Of A Function

Find the inverse function of \(\displaystyle f(x)=2x-3\).

Possible Answers:

\(\displaystyle f^{-1}(x)=\frac{x+2}{3}\)

\(\displaystyle f^{-1}(x)=\frac{x+3}{2}\)

\(\displaystyle f^{-1}(x)=\frac{2}{x+3}\)

\(\displaystyle f^{-1}(x)=\frac{3}{x+2}\)

None of the other answers.

Correct answer:

\(\displaystyle f^{-1}(x)=\frac{x+3}{2}\)

Explanation:

To find the inverse you must reverse the variables and solve for y.

Reverse the variables:

\(\displaystyle f(x)=2x-3\)

\(\displaystyle y=2x-3\)

\(\displaystyle x=2y-3\)

Solve for y:

\(\displaystyle x=2y-3\)

\(\displaystyle x+3=2y\)

\(\displaystyle y=\frac{x+3}{2}\)

\(\displaystyle f^{-1}(x)=\frac{x+3}{2}\)

Example Question #41 : Inverse Functions

Are these two function inverses? \(\displaystyle f(x)=\sqrt{x-4}\)  and  \(\displaystyle g(x)=x^2+4\).

Possible Answers:

Cannot tell 

No

Yes

F(x) does not have an inverse.

G(x) does not have an inverse.

Correct answer:

Yes

Explanation:

One can ascertain if two functions have an inverse by finding the composition of both functions in turn. Each composition should equal x if the functions are indeed inverses of each other.

\(\displaystyle f(g(x))=\sqrt{x^2+4-4}=x\)

\(\displaystyle g(f(x))=(\sqrt{x-4})^2+4=x\)

The functions are inverses of each other.

Example Question #43 : Inverse Functions

Find the inverse of the following equation:

\(\displaystyle y = 2(x+2)+2\)

Possible Answers:

\(\displaystyle y_{inv}= \frac{1}{4}(x-1)\)

\(\displaystyle y_{inv}= \frac{1}{2}(x-6)\)

\(\displaystyle y_{inv}= \frac{1}{2}(x-1)\)

\(\displaystyle y_{inv}= \frac{1}{3}(x-2)\)

Correct answer:

\(\displaystyle y_{inv}= \frac{1}{2}(x-6)\)

Explanation:

To find the inverse of a function, replace the x any y positions:

Original Equation: \(\displaystyle y = 2(x+2)+2\)

Inversed Equation:  \(\displaystyle x = 2(y_{inv}+2)+2\)

Now solve for the inversed y value.

\(\displaystyle x = 2(y_{inv}+2)+2\)

\(\displaystyle \frac{x-2}{2} = y_{inv}+2\)

\(\displaystyle y_{inv}=\frac{x-2}{2}-2 = \frac{1}{2}(x-6)\)

Example Question #37 : Find The Inverse Of A Function

Find the inverse of the following equation:

\(\displaystyle y = \frac{1}{2}(x^2+4)\)

Possible Answers:

\(\displaystyle y_{inv}=(2x+5)^\frac{1}{3}\)

\(\displaystyle y_{inv}=(x+5)^2\)

\(\displaystyle y_{inv}=\sqrt{2x-4}\)

\(\displaystyle y_{inv}=(2x+2)^2\)

Correct answer:

\(\displaystyle y_{inv}=\sqrt{2x-4}\)

Explanation:

To find the inverse of a function, replace the x any y positions:

Original Equation: \(\displaystyle y = \frac{1}{2}(x^2+4)\)

Inversed Equation:  \(\displaystyle x = \frac{1}{2}(y_{inv}^2+4)\)

Now solve for the inversed y value.

\(\displaystyle x = \frac{1}{2}(y_{inv}^2+4)\)

\(\displaystyle 2x =(y_{inv}^2+4)\)

\(\displaystyle 2x-4 =y_{inv}^2\)

\(\displaystyle y_{inv}=\sqrt{2x-4}\)

Example Question #42 : Inverse Functions

Find the inverse of the following equation:

\(\displaystyle y = 2(x^3+12)+3\)

Possible Answers:

\(\displaystyle y_{inv}=(x-8)^\frac{1}{3}\)

\(\displaystyle y_{inv}=(\frac{x-27}{2})^\frac{1}{3}\)

\(\displaystyle y_{inv}=(x-7)^2\)

\(\displaystyle y_{inv}=(2x-12)^\frac{2}{3}\)

Correct answer:

\(\displaystyle y_{inv}=(\frac{x-27}{2})^\frac{1}{3}\)

Explanation:

To find the inverse of a function, replace the x any y positions:

Original Equation: \(\displaystyle y = 2(x^3+12)+3\)

Inversed Equation:  \(\displaystyle x = 2(y_{inv}^3+12)+3\)

Now solve for the inversed y value.

\(\displaystyle x = 2(y_{inv}^3+12)+3\)

\(\displaystyle x-3 = 2(y_{inv}^3+12)\)

\(\displaystyle \frac{x-3}{2}= y_{inv}^3+12\)

\(\displaystyle \frac{x-3}{2}-12= y_{inv}^3\)

\(\displaystyle y_{inv}=(\frac{x-3}{2}-12)^\frac{1}{3} = (\frac{x-27}{2})^\frac{1}{3}\)

Example Question #122 : Functions

Determine the inverse function, given 

\(\displaystyle y=x^3+2\)

 

Possible Answers:

\(\displaystyle y^{-1}=x^3-2\)

\(\displaystyle y^{-1}=\sqrt[3]{x-2}\)

\(\displaystyle y^{-1}=(x-2)^3\)

\(\displaystyle DNE\)

Correct answer:

\(\displaystyle y^{-1}=\sqrt[3]{x-2}\)

Explanation:

In order to find the inverse function we 

  1. switch the variables \(\displaystyle x\) and \(\displaystyle y\)
  2. solve for the new \(\displaystyle y\) variable

For the function

\(\displaystyle y=x^3+2\) ...

\(\displaystyle x=y^3+2\)

\(\displaystyle x-2=y^3\)

\(\displaystyle y=\sqrt[3]{x-2}\)

Hence, the inverse function is

\(\displaystyle y^{-1}=\sqrt[3]{x-2}\)

Learning Tools by Varsity Tutors