Precalculus : Law of Cosines and Sines

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Use The Laws Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d.\)

11

Possible Answers:

\(\displaystyle 5.92\)

\(\displaystyle 8.10\)

\(\displaystyle 6.91\)

\(\displaystyle 6.37\)

Correct answer:

\(\displaystyle 6.37\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle C.\)

\(\displaystyle \frac{5}{\sin 50}=\frac{3}{\sin C}\)

\(\displaystyle 5\sin C = 2.30\)

\(\displaystyle \sin C=0.46\)

\(\displaystyle C= 27.39\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 50+27.39+B=180\)

\(\displaystyle B=102.61\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 102.61}=\frac{5}{\sin 50}\)

\(\displaystyle d \sin 50= 4.88\)

\(\displaystyle d=6.37\)

 

Example Question #32 : Use The Laws Of Cosines And Sines

What is the largest possible angle, measured in degrees, in triangle \(\displaystyle ABC\) if \(\displaystyle \angle A = 30^\circ\), \(\displaystyle AB = 10\), and \(\displaystyle BC = 6\)?

Possible Answers:

\(\displaystyle 123.56^\circ\)

\(\displaystyle 144.56^\circ\)

\(\displaystyle 107.56^\circ\)

\(\displaystyle 156.56^\circ\)

\(\displaystyle 93.56^\circ\)

Correct answer:

\(\displaystyle 123.56^\circ\)

Explanation:

In the ambiguous SSA case, use Law of Sines to solve for the angle opposite the given side.

\(\displaystyle \\* \frac {\sin A}{a} = \frac {\sin C}{c} \\* \\* \frac {\sin 30^\circ}{6} = \frac {\sin C}{10} \\* \\* C = \arcsin \left(\frac {10 \sin 30^\circ}{6}\right) \approx 56.44^\circ\)

If \(\displaystyle C = 56.44^\circ\), then \(\displaystyle B = 93.56^\circ\)

However! Another possible value of C is \(\displaystyle (180 - 56.44)^\circ = 123.56^\circ\)

In this case the angles will be \(\displaystyle 30^\circ, 123.56^\circ, 26.44^\circ\).

This is bigger than \(\displaystyle 93.56^\circ\) and is consequently the answer.

Learning Tools by Varsity Tutors