Probability Theory : Conditional Distributions and Independence

Study concepts, example questions & explanations for Probability Theory

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Conditional Distributions And Independence

Let \(\displaystyle \uptext{X}\), and \(\displaystyle \uptext{Y}\) be the lifespans (in hours) of two electronic devices, and their joint probability mass function is given below.

\(\displaystyle \operatorname{f_{X,Y}}{\left (x,y \right )} = \begin{cases} c e^{- 10 x - 10 y} & 0< x< y< \infty \\ 0, & \text{Otherwise} \end{cases}\)


Determine the value of \(\displaystyle \uptext{c}\)

Possible Answers:

\(\displaystyle c = 400\)

\(\displaystyle c = 1\)

\(\displaystyle c = 50\)

\(\displaystyle c = \frac{200}{3}\)

\(\displaystyle c = 200\)

Correct answer:

\(\displaystyle c = 200\)

Explanation:

In order to find the value of \(\displaystyle \uptext{c}\), we need to take find the double integral of the function

Let's find what the bounds are for both \(\displaystyle \uptext{x}\), and \(\displaystyle \uptext{y}\)

We look at the p.d.f to see that the bounds for \(\displaystyle \uptext{x}\) are, \(\displaystyle 0< x< y\), and for \(\displaystyle \uptext{y}\), \(\displaystyle 0< y< \infty\)

Now let's set up the double integral

\(\displaystyle \int_{0}^{\infty}\int_{0}^{y} c e^{- 10 x - 10 y}\, dx\, dy\)


Before we evaluate it, we need to remember to set the double integral equal to one, since we are essentially solving for the c.d.f.

\(\displaystyle \int_{0}^{\infty}\int_{0}^{y} c e^{- 10 x - 10 y}\, dx\, dy = 1\)

Now evaluate the double integral

\(\displaystyle \int_{0}^{\infty} \frac{c}{10} e^{- 10 y} - \frac{c}{10} e^{- 20 y}\, dy = 1\)


To evaluate this, we need to use the limit definition

\(\displaystyle \lim_{b \to \infty}\left(- \frac{c}{100} e^{- 10 y} + \frac{c}{200} e^{- 20 y}\right) \Big|_{ 0 }^{ b }\)


\(\displaystyle - \lim_{b \to \infty}\left(- \frac{c}{200}\right) + \lim_{b \to \infty}\left(- \frac{c}{100} e^{- 10 b} + \frac{c}{200} e^{- 20 b}\right)\)

\(\displaystyle \frac{c}{200} = 1\)


Now we simply solve for \(\displaystyle \uptext{c}\)

\(\displaystyle c = 200\)

Example Question #11 : Conditional Distributions And Independence

Let \(\displaystyle \uptext{X}\), and \(\displaystyle \uptext{Y}\) be the lifespans (in hours) of two electronic devices, and their joint probability mass function is given below.


\(\displaystyle \operatorname{f_{X,Y}}{\left (x,y \right )} = \begin{cases} c e^{- 9 x - 11 y} & 0< x< y< \infty \\ 0, & \text{Otherwise} \end{cases}\)


Determine the value of \(\displaystyle \uptext{c}\).

Possible Answers:

\(\displaystyle c = 55\)

\(\displaystyle c = 220\)

\(\displaystyle c = \frac{220}{3}\)

\(\displaystyle c = 1\)

\(\displaystyle c = 440\)

Correct answer:

\(\displaystyle c = 220\)

Explanation:

In order to find the value of \(\displaystyle \uptext{c}\), we need to take find the double integral of the function

Let's find what the bounds are for both \(\displaystyle \uptext{x}\), and \(\displaystyle \uptext{y}\)

We look at the p.d.f to see that the bounds for \(\displaystyle \uptext{x}\) are, \(\displaystyle 0< x< y\), and for \(\displaystyle \uptext{y}\), \(\displaystyle 0< y< \infty\)

Now let's set up the double integral

\(\displaystyle \int_{0}^{\infty}\int_{0}^{y} c e^{- 9 x - 11 y}\, dx\, dy\)


Before we evaluate it, we need to remember to set the double integral equal to one, since we are essentially solving for the c.d.f.

\(\displaystyle \int_{0}^{\infty}\int_{0}^{y} c e^{- 9 x - 11 y}\, dx\, dy = 1\)


Now evaluate the double integral

\(\displaystyle \int_{0}^{\infty} \frac{c}{9} e^{- 11 y} - \frac{c}{9} e^{- 20 y}\, dy = 1\)


To evaluate this, we need to use the limit definition

\(\displaystyle \lim_{b \to \infty}\left(- \frac{c}{99} e^{- 11 y} + \frac{c}{180} e^{- 20 y}\right) \Big|_{ 0 }^{ b }\)

\(\displaystyle - \lim_{b \to \infty}\left(- \frac{c}{220}\right) + \lim_{b \to \infty}\left(- \frac{c}{99} e^{- 11 b} + \frac{c}{180} e^{- 20 b}\right)\)

\(\displaystyle \frac{c}{220} = 1\)

Now we simply solve for \(\displaystyle \uptext{c}\)

\(\displaystyle c = 220\)

Learning Tools by Varsity Tutors