PSAT Math : Geometry

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Other Polygons

Octagon

In the figure above, polygon ABDFHGEC is a regular octagon. What is the measure, in degrees, of angle FHI?

Possible Answers:

30

40

60

50

45

Correct answer:

45

Explanation:

Angle FHI is the supplement of angle FHG, which is an interior angle in the octagon. When two angles are supplementary, their sum is equal to 180 degrees. If we can find the measure of each interior angle in the octagon, then we can find the supplement of angle FHG, which will give us the measure of angle FHI.

The sum of the interior angles in a regular polygon is given by the formula 180(n – 2), where n is the number of sides in the polygon. An octagon has eight sides, so the sum of the angles of the octagon is 180(8 – 2) = 180(6) = 1080 degrees. Because the octagon is regular, all of its sides and angles are congruent. Thus, the measure of each angle is equal to the sum of its angles divided by 8. Therefore, each angle in the polygon has a measure of 1080/8 = 135 degrees. This means that angle FHG has a measure of 135 degrees.

Now that we know the measure of angle FHG, we can find the measure of FHI. The sum of the measures of FHG and FHI must be 180 degrees, because the two angles form a line and are supplementary. We can write the following equation:

Measure of FHG + measure of FHI = 180

135 + measure of FHI = 180

Subtract 135 from both sides.

Measure of FHI = 45 degrees.

The answer is 45. 

Example Question #2 : How To Find An Angle In A Polygon

What is the measure of each angle in a regular octagon?

Possible Answers:

150\displaystyle 150

135\displaystyle 135

75\displaystyle 75

90\displaystyle 90

180\displaystyle 180

Correct answer:

135\displaystyle 135

Explanation:

An octagon contains six triangles, or 1080 degrees. This means with 8 angles, each angle is 135 degrees.

Example Question #2 : How To Find An Angle In A Polygon

What is the measure of each central angle of an octagon?

Possible Answers:

60\displaystyle 60

120\displaystyle 120

90\displaystyle 90

35\displaystyle 35

45\displaystyle 45

Correct answer:

45\displaystyle 45

Explanation:

There are 360 degrees and 8 angles, so dividing leaves 45 degrees per angle.

Example Question #421 : Psat Mathematics

Pentagon

Note: Figure NOT drawn to scale.

Refer to the above figure.  \displaystyle \Delta OKR is equilateral and Pentagon \displaystyle KLMNO is regular.

Evaluate \displaystyle m \angle MNR.

Possible Answers:

\displaystyle 36 ^{\circ }

\displaystyle 48^{\circ }

\displaystyle 66^{\circ }

\displaystyle 54^{\circ }

\displaystyle 42^{\circ }

Correct answer:

\displaystyle 42^{\circ }

Explanation:

By angle addition, 

\displaystyle m \angle MNR + m \angle RNO = m \angle MNO

 

\displaystyle \angle MNO is an angle of a reguar pentagon, so its measure is \displaystyle \frac{180^{\circ}\times (5-2)}{5} = 108 ^{\circ}.

 

To find \displaystyle m \angle RNO, first we find \displaystyle m \angle NOR.

By angle addition, 

\displaystyle m \angle NOR + m \angle ROK = m \angle NOK

\displaystyle \angle NOK is an angle of a regular pentagon and has measure \displaystyle 108 ^{\circ}.

\displaystyle \angle ROK, as an angle of an equilateral triangle, has measure \displaystyle 60 ^{\circ }

\displaystyle m \angle NOR + 60 ^{\circ }= 108 ^{\circ }

\displaystyle m \angle NOR = 48 ^{\circ }

\displaystyle \Delta OKR is equilateral, so \displaystyle \overline{OR} \cong \overline{OK}; Pentagon \displaystyle KLMNO is regular, so \displaystyle \overline{OK} \cong \overline{NO}. Therefore, \displaystyle \overline{OR} \cong \overline{ON}, and by the Isosceles Triangle Theorem, \displaystyle m \angle NRO = m \angle RNO.

The degree measures of three angles of a triangle total \displaystyle 180 ^{\circ }, so:

\displaystyle m \angle NRO + m \angle RNO + m \angle NOR = 180^{\circ }

\displaystyle m \angle RNO + m \angle RNO + 48^{\circ } = 180^{\circ }

\displaystyle 2 m \angle RNO + 48^{\circ } = 180^{\circ } 

\displaystyle 2 m \angle RNO = 132^{\circ }

\displaystyle m \angle RNO = 66^{\circ }

 

Since

\displaystyle m \angle MNR + m \angle RNO = m \angle MNO

we have 

\displaystyle m \angle MNR + 66 ^{\circ } = 108^{\circ }

\displaystyle m \angle MNR = 42^{\circ }

Example Question #101 : Plane Geometry

Pentagon \displaystyle ABCDE is regular. If diagonal \displaystyle \overline{BE} is drawn, which of the following describes Quadrilateral \displaystyle BCDE?

Possible Answers:

Quadrilateral \displaystyle BCDE is a rectangle but not a rhombus.

Quadrilateral \displaystyle BCDE is a trapezoid.

None of the other responses is correct.

Quadrilateral \displaystyle BCDE is a rhombus but not a rectangle.

Quadrilateral \displaystyle BCDE is a parallelogram but neither a rectangle nor a rhombus.

Correct answer:

Quadrilateral \displaystyle BCDE is a trapezoid.

Explanation:

The figure described is below.

Pentagon

Each of the angles of the pentagon has measure \displaystyle \frac{180^{\circ } (5-2)}{5} = 108^{\circ }

\displaystyle \Delta ABE is an isosceles triangle, and \displaystyle m\angle A = 108^{\circ }, so 

\displaystyle m \angle ABE = \frac{1}{2} \left (180^{\circ } - 108^{\circ } \right ) = 36^{\circ }

and

\displaystyle m \angle CBE = m \angle CBA - m \angle ABE = 108^{\circ } - 36^{\circ } = 72^{\circ }

Since

\displaystyle m \angle C =108^{\circ },

\displaystyle m \angle C + m\angle CBE = 108^{\circ } + 72^{\circ } = 180^{\circ }

and by the parallel postulate,

\displaystyle \overline{CD} || \overline{BE}

Quadrilateral \displaystyle BCDE has exactly one pair of parallel sides, so it is a trapezoid. 

Example Question #1 : How To Find The Length Of A Side Of A Polygon

If the following shape was going to be drawn in a circle, what is the minimum radius of the circle?

Possible Answers:

11

9

7

10

8

Sat_math_picture3


Correct answer:

7

Explanation:

IF you draw the longest diagonal across the shape, the length of it is 13.4. This means the radius must be at least 6.7. The answer is 7.

Example Question #1 : How To Find The Length Of A Side Of A Polygon

Heptagon

Note: Figure NOT drawn to scale.

The above polygon has perimeter 190. Evaluate \displaystyle A + B + C.

Possible Answers:

\displaystyle 75

\displaystyle 170

\displaystyle 95

\displaystyle 85

\displaystyle 150

Correct answer:

\displaystyle 85

Explanation:

To get the expression equivalent to the perimeter, add the lengths of the sides:

\displaystyle P = A + A + B + B + C + C + 20

Since the perimeter is 190, we can simplify this to

\displaystyle 190 = 2A + 2B + 2C + 20

and solve as follows:

\displaystyle 2\left ( A + B + C \right )+ 20 = 190

\displaystyle 2\left ( A + B + C \right )= 170

\displaystyle A + B+C = 85

Example Question #21 : Other Polygons

Heptagon

Note: Figure NOT drawn to scale.

The perimeter of the above polygon is 225. Also, \displaystyle B = A + C.

Evaluate \displaystyle B.

Possible Answers:

\displaystyle B = 37 \frac{1}{2}

\displaystyle B = 56\frac{1}{4}

\displaystyle B = 34\frac{1}{6}

Insufficient information exists to answer the question.

\displaystyle B = 51\frac{1}{4}

Correct answer:

\displaystyle B = 51\frac{1}{4}

Explanation:

To get the expression equivalent to the perimeter, add the lengths of the sides:

\displaystyle P = A + A + B + B + C + C + 20

Since the perimeter is 225, we can simplify this to

\displaystyle 225= 2A + 2B + 2C + 20

and, furthermore, since \displaystyle B = A + C,

\displaystyle 2A + 2B + 2C = 205

\displaystyle 2B +2A + 2C = 205

\displaystyle 2B +2\left (A + C \right )= 205

\displaystyle 2B +2B= 205

\displaystyle 4B = 205

\displaystyle B = 51\frac{1}{4}

Example Question #421 : Geometry

Regular Octagon \displaystyle ABCDEFGH has sidelength 1.

Give the length of diagonal \displaystyle \overline{AD} .

Possible Answers:

\displaystyle \frac{2 + \sqrt{3}}{2}

\displaystyle 1 + \sqrt{3}

\displaystyle \frac{2 + \sqrt{2}}{2}

\displaystyle 1 + \sqrt{2}

\displaystyle 2

Correct answer:

\displaystyle 1 + \sqrt{2}

Explanation:

The trick is to construct segments perpendicular to \displaystyle \overline{AD} from \displaystyle B and \displaystyle C, calling the points of intersection \displaystyle X and \displaystyle Y respectively.

Octagon_1

Each interior angle of a regular octagon measures

\displaystyle \frac{\left ( 8 - 2\right ) 180^{\circ }}{8} = 135^{\circ },

and by symmetry,  \displaystyle m \angle HAD = m \angle ADE = 90^{\circ },

so \displaystyle m \angle BAX = m \angle CDY= 45^{\circ }.

This makes \displaystyle \Delta BAX and \displaystyle \Delta CDY \displaystyle 45^{\circ } -45^{\circ } -90^{\circ } triangles.

Since their hypotenuses are sides of the octagon with length 1, then their legs - in particular, \displaystyle \overline{AX} and \displaystyle \overline{YD} - have length \displaystyle \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}

Also, since a rectangle was formed when the perpendiculars were drawn, \displaystyle XY = BC = 1.

The length of diagonal \displaystyle \overline{AD} is

\displaystyle AD = AX + XY + YD = \frac{\sqrt{2}}{2}+ 1 + \frac{\sqrt{2}}{2} = 1 + \sqrt{2}.

Example Question #421 : Psat Mathematics

Regular Polygon \displaystyle ABCDEFGHIJKL (a twelve-sided polygon, or dodecagon) has sidelength 1.

Give the length of diagonal \displaystyle \overline{AD} to the nearest tenth. 

Possible Answers:

\displaystyle \frac{2 + \sqrt{2}}{2}

\displaystyle 1 + \sqrt{3}

\displaystyle \frac{2 + \sqrt{3}}{2}

\displaystyle 1 + \sqrt{2}

\displaystyle 2

Correct answer:

\displaystyle 1 + \sqrt{3}

Explanation:

The trick is to construct segments perpendicular to \displaystyle \overline{AD} from \displaystyle B and \displaystyle C, calling the points of intersection \displaystyle X and \displaystyle Y respectively.

Dodecagon

Each interior angle of a regular dodecagon measures

\displaystyle \frac{\left ( 12 - 2\right ) 180^{\circ }}{12} = 150^{\circ }.

Since \displaystyle \overline{BX} and \displaystyle \overline{CY} are perpendicular to \displaystyle \overline{AD}, it can be shown via symmetry that they are also perpendicular to \displaystyle \overline{BC}. Therefore, 

\displaystyle \angle ABX and \displaystyle \angle DCY both measure \displaystyle 60^{\circ } 

and \displaystyle \Delta ABX and \displaystyle \Delta DCY are \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangles with long legs \displaystyle \overline{AX} and \displaystyle \overline{YD}. Since their hypotenuses are sides of the dodecagon and therefore have length 1, 

\displaystyle AX = YD = \frac{\sqrt{3}}{2}.

Also, since Quadrilateral \displaystyle BCXY is a rectangle, \displaystyle XY = BC = 1.

The length of diagonal \displaystyle \overline{AD} is\displaystyle AD = AX + XY + YD = \frac{\sqrt{3}}{2}+ 1 + \frac{\sqrt{3}}{2} = 1 + \sqrt{3}.

Learning Tools by Varsity Tutors