SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #14 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle x^2+6x+8=0\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle \pm2\)

\(\displaystyle \pm4\)

\(\displaystyle -2, -4\)

\(\displaystyle 2, 4\)

Correct answer:

\(\displaystyle -2, -4\)

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\(\displaystyle x^2+6x+8=0\) 

This is a quadratic equation. We need to find two terms that are factors of the c term that add up to the b term.

In this case, we should have \(\displaystyle (x+2)(x+4)=0\)

Solve each binomial individually. 

\(\displaystyle x+2=0\) Subtract \(\displaystyle 2\) on both sides. \(\displaystyle x=-2\)

\(\displaystyle x+4=0\) Subtract \(\displaystyle 4\) on both sides. \(\displaystyle x=-4\)

Answers are \(\displaystyle -2, -4\).

Example Question #181 : Sat Subject Test In Math I

Solve for \(\displaystyle x\).

\(\displaystyle x+24=103\)

Possible Answers:

\(\displaystyle 117\)

\(\displaystyle 69\)

\(\displaystyle 127\)

\(\displaystyle 89\)

\(\displaystyle 79\)

Correct answer:

\(\displaystyle 79\)

Explanation:

\(\displaystyle x+24=103\) Subtract \(\displaystyle 24\) on both sides.

\(\displaystyle x=79\)

Example Question #14 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle x+46=21\)

Possible Answers:

\(\displaystyle -15\)

\(\displaystyle 67\)

\(\displaystyle -35\)

\(\displaystyle 77\)

\(\displaystyle -25\)

Correct answer:

\(\displaystyle -25\)

Explanation:

\(\displaystyle x+46=21\) Subtract \(\displaystyle 46\) on both sides. Since \(\displaystyle 46\) is greater than \(\displaystyle 21\) and is negative, our answer is negative. We treat as a normal subtraction.

\(\displaystyle x=-25\)

Example Question #182 : Sat Subject Test In Math I

Solve for \(\displaystyle x\).

\(\displaystyle x-85=213\)

Possible Answers:

\(\displaystyle 128\)

\(\displaystyle 168\)

\(\displaystyle 298\)

\(\displaystyle 228\)

\(\displaystyle 178\)

Correct answer:

\(\displaystyle 298\)

Explanation:

\(\displaystyle x-85=213\) Add \(\displaystyle 85\) to both sides.

\(\displaystyle x=298\)

Example Question #26 : Single Variable Algebra

Solve for \(\displaystyle x\).

\(\displaystyle x-145=-241\)

Possible Answers:

\(\displaystyle 86\)

\(\displaystyle 126\)

\(\displaystyle -96\)

\(\displaystyle -76\)

\(\displaystyle -106\)

Correct answer:

\(\displaystyle -96\)

Explanation:

\(\displaystyle x-145=-241\) Add \(\displaystyle 145\) on both sides. Since \(\displaystyle 241\) is greater than \(\displaystyle 145\) and is negative, our answer is negative. We treat as a normal subtraction.

\(\displaystyle x=-96\)

Example Question #25 : Single Variable Algebra

Solve for \(\displaystyle x\).

\(\displaystyle -12x=420\)

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 45\)

\(\displaystyle -35\)

\(\displaystyle -45\)

\(\displaystyle 25\)

Correct answer:

\(\displaystyle -35\)

Explanation:

\(\displaystyle -12x=420\) Divide \(\displaystyle -12\) on both sides. When dividing with a positive number, our answer is negative.

\(\displaystyle x=-35\)

Example Question #26 : Single Variable Algebra

Solve for \(\displaystyle x\).

\(\displaystyle -26x=-234\)

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 11\)

\(\displaystyle -12\)

\(\displaystyle 9\)

\(\displaystyle -9\)

Correct answer:

\(\displaystyle 9\)

Explanation:

\(\displaystyle -26x=-234\) Divide \(\displaystyle -26\) on both sides. When dividing with another negative number,  our answer is positive.

\(\displaystyle x=9\)

Example Question #23 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{x}{27}=-12\)

Possible Answers:

\(\displaystyle 246\)

\(\displaystyle -324\)

\(\displaystyle 345\)

\(\displaystyle 324\)

\(\displaystyle -234\)

Correct answer:

\(\displaystyle -324\)

Explanation:

\(\displaystyle \frac{x}{27}=-12\) Multiply \(\displaystyle 27\) on both sides. When multiplying with a negative number, our answer is negative.

\(\displaystyle x=-324\)

Example Question #24 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{x}{-32}=-11\)

Possible Answers:

\(\displaystyle 374\)

\(\displaystyle 352\)

\(\displaystyle 364\)

\(\displaystyle 242\)

\(\displaystyle 252\)

Correct answer:

\(\displaystyle 352\)

Explanation:

\(\displaystyle \frac{x}{-32}=-11\) Multiply \(\displaystyle -32\) on both sides. When multiplying with another negative number, our answer is positive.

\(\displaystyle x=352\)

Example Question #25 : Solving Equations

Solve for \(\displaystyle x\).

\(\displaystyle \sqrt{x+12}=13\)

Possible Answers:

\(\displaystyle 181\)

\(\displaystyle 157\)

\(\displaystyle 1\)

\(\displaystyle 169\)

\(\displaystyle 144\)

Correct answer:

\(\displaystyle 157\)

Explanation:

\(\displaystyle \sqrt{x+12}=13\) Square both sides to get rid of the radical.

\(\displaystyle x+12=169\) Subtract \(\displaystyle 12\) on both sides.

\(\displaystyle x=157\)

Learning Tools by Varsity Tutors