SAT Math : Algebra

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #41 : Squaring / Square Roots / Radicals

Evaluate \(\displaystyle \left ( 2 i \sqrt{5}\right )^{5} \cdot \left ( 3 i \sqrt{5} \right )^{3}\)

Possible Answers:

\(\displaystyle - 540,000 i\)

None of the other choices gives the correct response.

\(\displaystyle -540,000\)

\(\displaystyle -108,000 i \sqrt{5}\)

\(\displaystyle -108,000 \sqrt{5}\)

Correct answer:

None of the other choices gives the correct response.

Explanation:

Apply the Power of a Product Rule:

\(\displaystyle \left ( 2 i \sqrt{5}\right )^{5} \cdot \left ( 3 i \sqrt{5} \right )^{3}\)

\(\displaystyle = 2 ^{5} \cdot i^{5} \cdot \left ( \sqrt{5}\right )^{5} \cdot 3 ^{3} \cdot i ^{3} \cdot \left ( \sqrt{5} \right )^{3}\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3} \cdot i^{5}\cdot i ^{3} \cdot \left ( \sqrt{5}\right )^{5} \cdot \left ( \sqrt{5} \right )^{3}\)

Applying the Product of Powers Rule:

\(\displaystyle 2 ^{5} \cdot 3 ^{3} \cdot i^{5}\cdot i ^{3} \cdot \left ( \sqrt{5}\right )^{5} \cdot \left ( \sqrt{5} \right )^{3}\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3} \cdot i^{5+3} \cdot \left ( \sqrt{5}\right )^{5+3}\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3}\cdot \left ( \sqrt{5}\right )^{8} \cdot i^{8}\)

\(\displaystyle i\) raised to any multiple of 4 is equal to 1, and \(\displaystyle \sqrt{5} = 5 ^{\frac{1}{2}}\), so, substituting and evaluating:

\(\displaystyle 2 ^{5} \cdot 3 ^{3}\cdot \left ( \sqrt{5}\right )^{8} \cdot i^{8}\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3}\cdot \left ( 5^{\frac{1}{2}} \right )^{8} \cdot 1\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3}\cdot 5^{ \frac{1}{2} \cdot 8} \cdot 1\)

\(\displaystyle = 2 ^{5} \cdot 3 ^{3}\cdot 5^{4} \cdot 1\)

\(\displaystyle = 32 \cdot 27 \cdot 625 \cdot 1\)

\(\displaystyle =540,000\)

This is not among the given choices.

Example Question #44 : Squaring / Square Roots / Radicals

\(\displaystyle x = 7 + 2 i \sqrt{5}\)\(\displaystyle y\) is the complex conjugate of \(\displaystyle x\).

Evaluate 

\(\displaystyle x^{2} + 2xy + y^{2}\).

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 80\)

\(\displaystyle -196\)

\(\displaystyle 196\)

\(\displaystyle -80\)

Correct answer:

\(\displaystyle 196\)

Explanation:

\(\displaystyle x^{2} + 2xy + y^{2}\) conforms to the perfect square trinomial pattern

\(\displaystyle x^{2} + 2xy + y^{2} = (x+y) ^{2}\).

The easiest way to solve this problem is to add \(\displaystyle x\) and \(\displaystyle y\), then square the sum. 

The complex conjugate of a complex number \(\displaystyle a+bi\) is \(\displaystyle a-bi\).

\(\displaystyle x = 7 + 2 i \sqrt{5}\),

so \(\displaystyle y\) is the complex conjugate of this; 

\(\displaystyle y = 7 - 2 i \sqrt{5}\)

and 

\(\displaystyle x+y = ( 7 + 2 i \sqrt{5} ) + ( 7 - 2 i \sqrt{5}) = 7+ 7+ 2 i \sqrt{5} - 2 i \sqrt{5} = 14\)

Substitute 14 for \(\displaystyle x+y\):

\(\displaystyle x^{2} + 2xy + y^{2} = (x+y) ^{2} = 14^{2} = 196\).

Example Question #45 : Squaring / Square Roots / Radicals

\(\displaystyle x = 4+ 7i\)\(\displaystyle y\) is the complex conjugate of \(\displaystyle x\).

Evaluate 

\(\displaystyle x^{2} + 2xy + y^{2}\).

Possible Answers:

\(\displaystyle -132-224i\)

\(\displaystyle 196\)

\(\displaystyle 64\)

\(\displaystyle -132+224i\)

\(\displaystyle -196\)

Correct answer:

\(\displaystyle 64\)

Explanation:

\(\displaystyle x^{2} + 2xy + y^{2}\) conforms to the perfect square trinomial pattern

\(\displaystyle x^{2} + 2xy + y^{2} = (x+y) ^{2}\).

The easiest way to solve this problem is to add \(\displaystyle x\) and \(\displaystyle y\), then square the sum. 

The complex conjugate of a complex number \(\displaystyle a+bi\) is \(\displaystyle a-bi\).

\(\displaystyle x = 4+ 7i\),

so \(\displaystyle y\) is the complex conjugate of this; 

\(\displaystyle y = 4 - 7i\)

and 

\(\displaystyle x+y = (4+7i) + (4-7i) = 4+4 +7i - 7i = 8\)

Substitute 8 for \(\displaystyle x+y\):

\(\displaystyle x^{2} + 2xy + y^{2} = (x+y) ^{2} = 8^{2} = 64\).

Example Question #46 : Squaring / Square Roots / Radicals

\(\displaystyle x = 5+ 8i\)\(\displaystyle y\) is the complex conjugate of \(\displaystyle x\).

Evaluate 

\(\displaystyle x^{2} - 2xy + y^{2}\).

Possible Answers:

\(\displaystyle 256\)

\(\displaystyle 100\)

\(\displaystyle -156-320 i\)

\(\displaystyle -256\)

\(\displaystyle -156+320 i\)

Correct answer:

\(\displaystyle -256\)

Explanation:

\(\displaystyle x^{2} - 2xy + y^{2}\) conforms to the perfect square trinomial pattern

\(\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2}\).

The easiest way to solve this problem is to subtract \(\displaystyle x\) and \(\displaystyle y\), then square the difference. 

The complex conjugate of a complex number \(\displaystyle a+bi\) is \(\displaystyle a-bi\).

\(\displaystyle x = 5+ 8i\),

so \(\displaystyle y\) is the complex conjugate of this; 

\(\displaystyle y = 5 - 8i\)

\(\displaystyle x-y = (5+8i) - (5-8i) = 5- 5 + 8i + 8i = 16i\)

Substitute \(\displaystyle 16i\) for \(\displaystyle x-y\):

\(\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2} =( 16 i)^{2} = 16 ^{2} \cdot i^{2}\)

By definition, \(\displaystyle i^{2} = -1\), so, substituting,

\(\displaystyle 16 ^{2} \cdot i^{2} = 256 (-1 ) = -256\),

the correct choice.

Example Question #2401 : Sat Mathematics

Remember that \(\displaystyle i= \sqrt{-1}\).

Simplify: \(\displaystyle (2+3i)(1-i)\)

Possible Answers:

\(\displaystyle -1+5i\)

\(\displaystyle -1+i\)

\(\displaystyle -1-i\)

\(\displaystyle 5-i\)

\(\displaystyle 5+i\)

Correct answer:

\(\displaystyle 5+i\)

Explanation:

Use FOIL to multiply complex numbers as follows:

\(\displaystyle (2+3i)(1-i)\)

\(\displaystyle 2-2i+3i-3i^2\)

Since \(\displaystyle i= \sqrt{-1}\), it follows that \(\displaystyle i^2 = -1\), so then:

\(\displaystyle 2-2i+3i-3 \cdot (-1)\)

\(\displaystyle 2-2i+3i+3\)

Combining like terms gives:

\(\displaystyle 5+i\)

Example Question #621 : Algebra

Simplify: \(\displaystyle (3+2i)(3-2i)\)

Possible Answers:

\(\displaystyle 13-12i\)

\(\displaystyle 5\)

\(\displaystyle 5-12i\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 13\)

Explanation:

Use FOIL:

\(\displaystyle (3+2i)(3-2i)=9-6i+6i-4i^2\)

Combine like terms:

\(\displaystyle =9-4i^2\)

But since \(\displaystyle i^2=-1\), we know

\(\displaystyle 9-4i^2=9-4 \cdot (-1)=9+4=13\)

Example Question #49 : Squaring / Square Roots / Radicals

\(\displaystyle x = 5+ i \sqrt{7}\)\(\displaystyle y\) is the complex conjugate of \(\displaystyle x\).

Evaluate 

\(\displaystyle x^{2} - 2xy + y^{2}\).

Possible Answers:

\(\displaystyle 100\)

\(\displaystyle 28\)

\(\displaystyle \textup{None of the other choices gives the correct response}\)

\(\displaystyle -100\)

\(\displaystyle -28\)

Correct answer:

\(\displaystyle -28\)

Explanation:

\(\displaystyle x^{2} - 2xy + y^{2}\) conforms to the perfect square trinomial pattern

\(\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2}\).

The easiest way to solve this problem is to subtract \(\displaystyle x\) and \(\displaystyle y\), then square the difference. 

The complex conjugate of a complex number \(\displaystyle a+bi\) is \(\displaystyle a-bi\).

\(\displaystyle x = 5+ i \sqrt{7}\),

so \(\displaystyle y\) is the complex conjugate of this; 

\(\displaystyle x = 5- i \sqrt{7}\)

\(\displaystyle x-y = (5+ i \sqrt{7}) - (5- i \sqrt{7}) = 5- 5 +i \sqrt{7}+ i \sqrt{7} = 2i \sqrt{7}\)

\(\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2}\)

\(\displaystyle =( 2i \sqrt{7} )^{2}\)

Taking advantage of the Power of a Product Rule and the fact that \(\displaystyle i^{2} = -1\):

\(\displaystyle = 2^{2} \cdot i ^{2}\cdot (\sqrt{7}) ^{2}\)

\(\displaystyle =4 \cdot (-1 )\cdot 7\)

\(\displaystyle = -28\)

Example Question #211 : Exponents

Raise \(\displaystyle 7+2i\) to the fourth power.

Possible Answers:

\(\displaystyle 2,809 +2,520 i\)

None of these

\(\displaystyle 2,025+2,968i\)

\(\displaystyle 3,593+2,968i\)

\(\displaystyle 1,241 +2,520 i\)

Correct answer:

\(\displaystyle 1,241 +2,520 i\)

Explanation:

By the Power of a Power Rule, the fourth power of any number is equal to the square of the square of that number:

\(\displaystyle x^{4} = x ^{2 \cdot 2} =( x^{2})^{2}\)

Therefore, one way to raise \(\displaystyle 7+2i\) to the fourth power is to square it, then to square the result.

Using the binomial square pattern to square \(\displaystyle 7+2i\):

\(\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + (2i ) ^{2}\)

Applying the Power of a Product Property:

\(\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + 2^{2} \cdot i ^{2}\)

Since \(\displaystyle i^{2} = -1\) by definition: 

\(\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + 2^{2} \cdot (-1)\)

\(\displaystyle = 49 + 28i -4\)

\(\displaystyle = 45 + 28i\)

Square this using the same steps:

\(\displaystyle (45 + 28i )^{2} = 45 ^{2} + 2 \cdot 45 \cdot 28 i + (28 i) ^{2}\)

\(\displaystyle = 45 ^{2} + 2 \cdot 45 \cdot 28 i + 28^{2} i ^{2}\)

\(\displaystyle = 45 ^{2} + 2 \cdot 45 \cdot 28 i + 28^{2} (-1)\)

\(\displaystyle = 2,025 +2,520 i -784\)

\(\displaystyle = 1,241 +2,520 i\)

Example Question #51 : Squaring / Square Roots / Radicals

Raise \(\displaystyle 8 - 3i\) to the fourth power.

Possible Answers:

\(\displaystyle 7,633 - 7,008i\)

None of these

\(\displaystyle 721-5,280 i\)

\(\displaystyle 3,025 - 7,008i\)

\(\displaystyle 5,329-5,280 i\)

Correct answer:

\(\displaystyle 721-5,280 i\)

Explanation:

The easiest way to find \(\displaystyle (8 - 3i)^{4}\) is to note that  

 \(\displaystyle (8 - 3i)^{4} =[ (8 - 3i)^{2} ]^{2}\).

Therefore, we can find the fourth power of \(\displaystyle 8 - 3i\) by squaring \(\displaystyle 8 - 3i\), then squaring the result.

Using the binomial square pattern to square \(\displaystyle 8 - 3i\):

\(\displaystyle (8 - 3i)^{2} = 8^{2} - 2 \cdot 8 \cdot 3i + (3i)^{2}\)

Applying the Power of a Product Property:

\(\displaystyle (8 - 3i)^{2} = 8^{2} - 2 \cdot 8 \cdot 3i + 3^{2} \cdot i^{2}\)

Since \(\displaystyle i^{2} = -1\) by definition: 

\(\displaystyle (8 - 3i)^{2} = 64 - 48 i + 9 (-1)\)

\(\displaystyle = 64 - 48 i -9\)

\(\displaystyle = 55 - 48 i\)

Square this using the same steps:

\(\displaystyle ( 55 - 48 i )^{2} = 55^{2} - 2 \cdot 55 \cdot 48 i + (48i)^{2}\)

\(\displaystyle = 3,025-5,280 i + 48^{2} i^{2}\)

\(\displaystyle = 3,025-5,280 i + 2,304(-1)\)

\(\displaystyle = 3,025-5,280 i - 2,304\)

\(\displaystyle = 721-5,280 i\)

Therefore, \(\displaystyle (8 - 3i)^{4} = 721-5,280 i\)

 

Example Question #211 : Exponents

Raise \(\displaystyle 5+4i\) to the third power.

Possible Answers:

\(\displaystyle 365 + 236i\)

\(\displaystyle -115 + 236i\)

\(\displaystyle -115 + 364i\)

\(\displaystyle 365 + 364i\)

None of these

Correct answer:

\(\displaystyle -115 + 236i\)

Explanation:

To raise any expression \(\displaystyle A+B\) to the third power, use the pattern

\(\displaystyle \left (A+B \right )^{3} = A^{3} + 3A^{2} B + 3 AB^{2} + B^{3}\)

Setting \(\displaystyle A = 5, B = 4i\):

\(\displaystyle (5+4i)^{3} = 5^{3} + 3\cdot 5^{2} \cdot 4i + 3 \cdot 5 \cdot (4i)^{2} + (4i)^{3}\)

Taking advantage of the Power of a Product Rule:

\(\displaystyle (5+4i)^{3} = 5^{3} + 3\cdot 5^{2} \cdot 4i + 3 \cdot 5 \cdot 4^{2} \cdot i^{2} +4 ^{3} \cdot i ^{3}\)

Since \(\displaystyle i^{2} = -1\) and \(\displaystyle i^{3} = i^{2} \cdot i = -1 \cdot i = -i\):

\(\displaystyle (5+4i)^{3} = 125 + 3\cdot 25 \cdot 4 i + 3 \cdot 5 \cdot 16 \cdot (-1) +64 \cdot (- i )\)

\(\displaystyle (5+4i)^{3} = 125+ 300i -240 -64i\)

Collecting real and imaginary terms:

\(\displaystyle (5+4i)^{3} = 125 -240 + 300i -64i\)

\(\displaystyle (5+4i)^{3} = -115 + 236i\)

 

Learning Tools by Varsity Tutors