SAT Math : Solution Sets

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #181 : Equations / Inequalities

Give the solution set of the inequality

\displaystyle x^{2} + 32 \ge 12x

Possible Answers:

\displaystyle (-\infty, -8] \cup [-4, \infty)

\displaystyle (-\infty, 2] \cup [16, \infty)

The set of all real numbers

\displaystyle (-\infty, -16] \cup [-2, \infty)

\displaystyle (-\infty, 4] \cup [8, \infty)

Correct answer:

\displaystyle (-\infty, 4] \cup [8, \infty)

Explanation:

Solve a quadratic inequality by first putting it in the standard form \displaystyle ax^{2} + bx + c \ge 0 (or similar); this is done by subtracting \displaystyle 12x from both sides:

\displaystyle x^{2} + 32 - 12x \ge 12x - 12x

\displaystyle x^{2} - 12x + 32 \ge 0

Factor the quadratic trinomial on the left:

\displaystyle x^{2} - 12x + 32 = (x + \square )(x + \square )

We are looking for two integers whose product is 32 and whose sum is \displaystyle -12. Through a little trial and error, we find \displaystyle -8 and \displaystyle -4, so

\displaystyle x^{2} - 12x + 32 = (x -8 )(x -4 ),

making the inequality 

\displaystyle (x -8 )(x -4 ) \ge 0

The boundary points of the solution set are the points at which either factor is equal to 0:

\displaystyle x- 8 = 0, in which case \displaystyle x= 8, and

\displaystyle x- 4 = 0, in which case \displaystyle x= 4.

These points divide the real numbers into three intervals: \displaystyle (-\infty, 4), (4, 8), (8, \infty)

We can choose one test point from each interval to determine the truth of each statement on the interval:

\displaystyle (-\infty, 4): choose \displaystyle x= 0 

\displaystyle x^{2} + 32 \ge 12x

\displaystyle 0^{2} + 32 \ge 12 \cdot 0

\displaystyle 0 + 32 \ge 0

\displaystyle 32 \ge 0

True: include \displaystyle (-\infty, 4)

 

\displaystyle (4, 8): choose \displaystyle x= 5

\displaystyle x^{2} + 32 \ge 12x

\displaystyle 5^{2} + 32 \ge 12 \cdot 5

\displaystyle 25 + 32 \ge 60

\displaystyle 57 \ge 60

False: exclude \displaystyle (4, 8).

 

\displaystyle (8, \infty): choose \displaystyle x= 9

\displaystyle x^{2} + 32 \ge 12x

\displaystyle 9^{2} + 32 \ge 12 \cdot 9

\displaystyle 81 + 32 \ge 108

\displaystyle 113 \ge 108

True: include \displaystyle (8, \infty)

 

The boundaries are also included, since the inequality allows for inclusion ("greater than or equal to"). The solution set is \displaystyle (-\infty, 4] \cup [8, \infty).

Example Question #21 : How To Find A Solution Set

Give the solution set of the inequality

\displaystyle \frac{x- 4}{x+ 8} \le 0

Possible Answers:

\displaystyle (-8, 4 ]

\displaystyle (-\infty, -8 ] \cup [ 4 , \infty)

\displaystyle (-\infty, -8 ) \cup (4 , \infty)

\displaystyle [-8, 4 ]

\displaystyle (-\infty, -8 ) \cup [ 4 , \infty)

Correct answer:

\displaystyle (-8, 4 ]

Explanation:

The boundary points of a rational inequality are those values of the variable for which the numerator or the denominator are equal to 0:

If numerator

\displaystyle x - 4 = 0, then

\displaystyle x = 4.

Since equality is permitted in the statement ( \displaystyle \le ), include this value of \displaystyle x.

If denominator 

\displaystyle x + 8 = 0,

then 

\displaystyle x = -8

Since this value makes the denominator 0, exclude it, regardless of the inequality symbol.

There are three intervals which must be tested for inclusion or exclusion:

\displaystyle (\infty , -8)\displaystyle (-8, 4 )\displaystyle (4, \infty)

Test one value on each interval in the original inequality for truth or falsity in order to determine which intervals should be included:

\displaystyle (\infty , -8): Set \displaystyle x = -9

\displaystyle \frac{x- 4}{x+ 8} \le 0

\displaystyle \frac{ -9 - 4}{-9 + 8} \le 0

\displaystyle \frac{ -13}{-1} \le 0

\displaystyle 13 \le 0

False; exclude \displaystyle (\infty , -8).

 

\displaystyle (-8, 4 ): Set \displaystyle x = 0

\displaystyle \frac{x- 4}{x+ 8} \le 0

\displaystyle \frac{0- 4}{0+ 8} \le 0

\displaystyle \frac{-4}{8} \le 0

\displaystyle -\frac{1}{2} \le 0

True; include \displaystyle (-8, 4 )

 

\displaystyle (4, \infty): Set \displaystyle x = 5

\displaystyle \frac{x- 4}{x+ 8} \le 0

\displaystyle \frac{5- 4}{5+ 8} \le 0

\displaystyle \frac{1}{13} \le 0

False; exclude \displaystyle (4, \infty)

 

Since \displaystyle -8 is excluded as a solution and 4 is included, the correct solution set is the interval \displaystyle (-8, 4 ].

Example Question #21 : Solution Sets

Give the solution set of the inequality

\displaystyle (x-7)(2x+ 5)\ge 21

Possible Answers:

\displaystyle \left (-\infty, -2 \frac{1}{2} \right ] \cup [7, \infty)

\displaystyle \left (-\infty, - 7 \right ] \cup \left [2 \frac{1}{2}, \infty \right )

\displaystyle \left (-\infty, -3 \frac{1}{2} \right ] \cup [8, \infty)

The inequality has no solution.

\displaystyle \left (-\infty, - 8 \right ] \cup \left [3 \frac{1}{2}, \infty \right )

Correct answer:

\displaystyle \left (-\infty, -3 \frac{1}{2} \right ] \cup [8, \infty)

Explanation:

Solve a quadratic inequality by first putting it in the standard form \displaystyle ax^{2} + bx + c \ge 0 (or similar); this is done by first applying the FOIL method to the product of the binomials on the right:

\displaystyle (x-7)(2x+ 5)\ge 21

\displaystyle x \cdot 2x + x \cdot 5 -7 \cdot 2x -7 \cdot 5 \ge 21

\displaystyle 2x ^{2} + 5 x -14 x -35 \ge 21

\displaystyle 2x ^{2} -9 x -35 \ge 21

Subtract 21 from both sides:

\displaystyle 2x ^{2} -9 x -35 - 21 \ge 21 - 21

\displaystyle 2x ^{2} -9 x -56 \ge 0

The \displaystyle ac method can be used to factor the trinomial; we are looking for two integers whose product is \displaystyle 2(-56) = -112 and whose sum is \displaystyle -9; by trial and error, we find that the numbers are 7 and \displaystyle -16. The trinomial can be rewritten:

\displaystyle 2x ^{2} -16x +7x -56 \ge 0

Factoring by grouping:

\displaystyle (2x ^{2} -16x) +(7x -56) \ge 0

\displaystyle 2x (x-8) + 7 (x-8) \ge 0

\displaystyle (2x + 7 )(x-8) \ge 0

The boundary points of the solution set are the points at which either factor is equal to 0:

\displaystyle 2x+7 = 0

\displaystyle 2x = -7

\displaystyle x = - \frac{7}{2} = -3 \frac{1}{2}

and 

\displaystyle x - 8 = 0

\displaystyle x = 8

These points divide the real numbers into three intervals: \displaystyle \left (-\infty, -3 \frac{1}{2} \right ), \left (-3 \frac{1}{2}, 8 \right ) , (8, \infty)

Test one value on each interval in the original inequality for truth or falsity in order to determine which intervals should be included:

\displaystyle \left (-\infty, -3 \frac{1}{2} \right ): Set \displaystyle x = -4

\displaystyle (x-7)(2x+ 5)\ge 21

\displaystyle (-4 -7) [2 \cdot (-4)+ 5] \ge 21

\displaystyle -11 (-8+ 5) \ge 21

\displaystyle -11 (-3) \ge 21

\displaystyle 33 \ge 21

True: include \displaystyle \left (-\infty, -3 \frac{1}{2} \right ).

 

\displaystyle \left (-3 \frac{1}{2}, 8 \right ): Set \displaystyle x= 0

\displaystyle (x-7)(2x+ 5)\ge 21

\displaystyle (0-7)(2 \cdot 0 + 5)\ge 21

\displaystyle -7( 0 + 5)\ge 21

\displaystyle -7( 5)\ge 21

\displaystyle -35 \ge 21

False: exclude \displaystyle \left (-3 \frac{1}{2}, 8 \right )

 

\displaystyle (8, \infty): Set \displaystyle x = 9

\displaystyle (x-7)(2x+ 5)\ge 21

\displaystyle (9-7)(2 \cdot 9 + 5)\ge 21

\displaystyle 2(18 + 5)\ge 21

\displaystyle 2(23)\ge 21

\displaystyle 46\ge 21

True: include \displaystyle (8, \infty).

 

The boundaries are also included, since the inequality allows for inclusion ("greater than or equal to"). The solution set is \displaystyle \left (-\infty, -3 \frac{1}{2} \right ] \cup [8, \infty).

Example Question #24 : Solution Sets

Give the solution set of the inequality

\displaystyle \frac{x-7}{x+ 3} \ge -4

Possible Answers:

\displaystyle (\infty , -3) \cup (-3, -1] \cup [7, \infty)

\displaystyle (-3, -1]

\displaystyle (\infty , -3) \cup [-1, \infty)

\displaystyle (-3, 7]

\displaystyle (\infty , -3) \cup [7, \infty)

Correct answer:

\displaystyle (\infty , -3) \cup [-1, \infty)

Explanation:

Get all expressions in the rational inequality over to the same side by adding 4 to both sides:

\displaystyle \frac{x-7}{x+ 3} \ge -4

\displaystyle \frac{x-7}{x+ 3} + 4 \ge -4 + 4

\displaystyle \frac{x-7}{x+ 3} + 4 \ge 0

Rewrite the expression on the left as a single rational expression, as follows:

\displaystyle \frac{x-7}{x+ 3} + \frac{4(x+3)}{x+3} \ge 0

\displaystyle \frac{x-7}{x+ 3} + \frac{4 x+4 \cdot 3 }{x+3} \ge 0

\displaystyle \frac{x-7}{x+ 3} + \frac{4 x+12 }{x+3} \ge 0

\displaystyle \frac{x-7 + 4x + 12}{x+ 3} \ge 0

\displaystyle \frac{x + 4x -7 + 12}{x+ 3} \ge 0

\displaystyle \frac{5x+5}{x+ 3} \ge 0

The boundary points of a rational inequality are those values of the variable for which the numerator or the denominator are equal to 0:

If numerator

\displaystyle 5x+5 = 0

then

\displaystyle 5x = -5

\displaystyle x = -1

Since equality is permitted in the statement ( \displaystyle \le ), include this value of \displaystyle x.

If denominator 

\displaystyle x+ 3 = 0

then

\displaystyle x = -3.

Since this value makes the denominator 0, exclude it, regardless of the inequality symbol.

There are three intervals which must be tested for inclusion or exclusion:

\displaystyle (\infty , -3)\displaystyle (-3, -1 )\displaystyle (-1, \infty)

Test one value on each interval in the original inequality for truth or falsity in order to determine which intervals should be included:

\displaystyle (\infty , -3): Set \displaystyle x = -4

\displaystyle \frac{x-7}{x+ 3} \ge -4

\displaystyle \frac{-4-7}{-4+ 3} \ge -4

\displaystyle \frac{-11}{-1} \ge -4

\displaystyle 11 \ge -4

True; include \displaystyle (\infty , -3)

 

\displaystyle (-3, -1 ): Set \displaystyle x = -2

\displaystyle \frac{x-7}{x+ 3} \ge -4

\displaystyle \frac{-2-7}{-2+ 3} \ge -4

\displaystyle \frac{-9}{1} \ge -4

\displaystyle -9 \ge 4

False: exclude \displaystyle (-3, -1 )

 

\displaystyle (-1, \infty): Set \displaystyle x = 0

\displaystyle \frac{x-7}{x+ 3} \ge -4

\displaystyle \frac{0-7}{0+ 3} \ge -4

\displaystyle \frac{ -7}{ 3} \ge -4

\displaystyle -2 \frac{ 1}{ 3} \ge -4

True: include \displaystyle (-1, \infty).

 

Since \displaystyle -3 is excluded as a solution and \displaystyle -1 is included, the correct solution set is \displaystyle (\infty , -3) \cup [-1, \infty)

Example Question #191 : Equations / Inequalities

Give the solution set of the inequality

\displaystyle |-6x+14| + 21 < 78

Possible Answers:

\displaystyle \left ( - 11 \frac{5}{6}, 7 \frac{1}{6} \right )

\displaystyle \left (- \infty , - 11 \frac{5}{6} \right ) \cup \left ( 7 \frac{1}{6} , \infty \right )

\displaystyle \left ( -7 \frac{1}{6}, 11 \frac{5}{6} \right )

\displaystyle \left (- \infty , -7 \frac{1}{6} \right ) \cup \left ( 11 \frac{5}{6}, \infty \right )

\displaystyle \left (- \infty , \infty \right )

Correct answer:

\displaystyle \left ( -7 \frac{1}{6}, 11 \frac{5}{6} \right )

Explanation:

In an absolute value inequality, the absolute value expression must be isolated on one side first. We can do this by subtracting 21 from both sides:

\displaystyle |-6x+14| + 21 < 78

\displaystyle |-6x+14| + 21-21 < 78 -21

\displaystyle |-6x+14| < 57

This can be rewritten as the three-part inequality

\displaystyle -57 < -6x+14 < 57

Subtract 14 from all three expressions:

\displaystyle -57 - 14 < -6x+14 - 14 < 57 - 14

\displaystyle -71 < -6x < 43

Divide all three expressions by \displaystyle -6, reversing the inequality symbols since you are dividing by a negative number:

\displaystyle -71\div (-6) >-6x \div (-6)> 43 \div (-6)

\displaystyle 11 \frac{5}{6} >x > -7 \frac{1}{6}

In interval notation, this is \displaystyle \left ( -7 \frac{1}{6}, 11 \frac{5}{6} \right ).

Example Question #21 : Solution Sets

Give the solution set of the inequality

\displaystyle 42 - |-2x+19| < 14

Possible Answers:

\displaystyle (-\infty, -23.5) \cup ( 4.5, \infty)

The inequality has no solution.

\displaystyle (-\infty, -4.5) \cup (23.5, \infty)

\displaystyle ( -4.5, 23.5 )

\displaystyle ( -23.5, 4.5 )

Correct answer:

\displaystyle (-\infty, -4.5) \cup (23.5, \infty)

Explanation:

\displaystyle 42 - |-2x+19| < 14

In an absolute value inequality, the absolute value expression must be isolated on one side first. We can di this by first subtracting 42 from both sides:

\displaystyle 42 - |-2x+19| - 42< 14 - 42

\displaystyle - |-2x+19| < -28

Divide by \displaystyle -1, reversing the direction of the inequality symbol since we are dividing by a negative number:

\displaystyle \frac{- |-2x+19| }{-1}> \frac{-28}{-1}

\displaystyle |-2x+19| >28

This inequality can be rewritten as the compound inequality

\displaystyle -2x+19 < -28 or \displaystyle -2x+19 >28

Solve each simple inequality separately. 

\displaystyle -2x+19 < -28

Subtract 19 from both sides:

\displaystyle -2x+19 - 19 < -28 - 19

\displaystyle -2x < -47

Divide by \displaystyle -2, remembering to reverse the symbol:

\displaystyle \frac{-2x}{-2} > \frac{-47}{-2}

\displaystyle x >23.5

In interval notation, this is \displaystyle (23.5, \infty).

Carry out the same steps on the other simple inequality:

\displaystyle -2x+19 >28

\displaystyle -2x+19 -19 >28 - 19

\displaystyle -2x >9

\displaystyle \frac{-2x}{-2} < \frac{9}{-2}

\displaystyle x < -4.5

In interval notation, this is \displaystyle (-\infty, -4.5).

Since the two simple inequalities are connected by an "or", their individual solution sets are connected by a union; the solution set is

\displaystyle (-\infty, -4.5) \cup (23.5, \infty).

Example Question #191 : Equations / Inequalities

Below is a table of earnings from playing blackjack.

 

\displaystyle \begin{tabular}{cccccccccccc} Jan & Feb & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec\\ \hline 1200& 400&133.33& 44.44& 14.814& 4.94 & 1.646& 0.549 & 0.183& 0.061 & 0.020 & 0.0067 \end{tabular}

Find the equation of depreciation. 

Possible Answers:

\displaystyle y=\left(\frac{1}{3}\right)^t

\displaystyle y=1200\left(\frac{1}{3}\right)^t

\displaystyle y=1200\left(\frac{2}{3}\right)^t

\displaystyle y=\left(\frac{2}{3}\right)^t

Correct answer:

\displaystyle y=1200\left(\frac{2}{3}\right)^t

Explanation:

In general, an equation of depreciation looks like the following.

\displaystyle y=a(1-r)^t, where \displaystyle a is the starting amount, \displaystyle r is the common ratio, and \displaystyle t is time.

For us \displaystyle a=1200\displaystyle r=\frac{1}{3}, and \displaystyle t=t.

\displaystyle y=1200\left(1-\frac{1}{3}\right)^t

\displaystyle y=1200\left(\frac{2}{3}\right)^t

 

Example Question #21 : How To Find A Solution Set

Screen shot 2016 02 18 at 3.27.37 pm

The above displays a scatterplot, where the red line is the line of best fit. The line of best fit equation is \displaystyle y=0.3021x+1.9032. What point on the scatterplot is the furthest from the line of best fit?

Possible Answers:

\displaystyle (4,6)

\displaystyle (4,3)

\displaystyle (1,2)

\displaystyle (1,1)

 \displaystyle (4,5)

Correct answer:

\displaystyle (4,6)

Explanation:

To answer this question, we should create a table of values and compare. For calculating the difference between the y value and the y value of the line of best, take the absolute value since it won't make since if it is negative.

\displaystyle \begin{tabular}{cccc} x& y & line of best fit & difference between y and line of best fit\\ \hline 1 & 1 & 2.2053& 2.2053\\ 1 & 2& 2.2053 & 0.2053\\ 1 & 3 & 2.2053 & 0.7947\\ 2& 1 & 2.5074 & 1.5074\\ 4 & 3 & 3.1116 & 0.1116\\ 4 & 5 & 3.1116 & 1.8884\\ 4 & 6 & 3.1116 & 2.8884\\ 6 & 2 & 3.7158 & 1.7158\\ 6 & 3 & 3.7158 & 0.7158 \end{tabular}

From our table of values, we can see that the point furthest from the line of best fit is \displaystyle (4,6).

Example Question #22 : How To Find A Solution Set

Find the solutions to 

\displaystyle f(x)=x^3-3x

Possible Answers:

\displaystyle x=0

\displaystyle x=\sqrt3

\displaystyle x=\pm\sqrt3

\displaystyle x=0

\displaystyle x=\pm\sqrt3

Correct answer:

\displaystyle x=0

\displaystyle x=\pm\sqrt3

Explanation:

First step is to set it equal to zero

\displaystyle f(x)=x^3-3x

\displaystyle x^3-3x=0

Now factor out an \displaystyle x

\displaystyle x(x^2-3)=0

Set up the equations, and solve for \displaystyle x.

\displaystyle x=0

\displaystyle x^2-3=0

\displaystyle x^2=3

\displaystyle x=\pm\sqrt3

 

Learning Tools by Varsity Tutors