SSAT Elementary Level Math : How to add

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #90 : How To Add

If I have \(\displaystyle 2\) dimes and \(\displaystyle 1\) nickel, how many cents do I have? 

Possible Answers:

\(\displaystyle 28\cent\)

\(\displaystyle 29\cent\)

\(\displaystyle 27\cent\)

\(\displaystyle 26\cent\)

\(\displaystyle 25\cent\)

Correct answer:

\(\displaystyle 25\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have two dimes and one nickel. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent}\) \(\displaystyle 5\cent\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 25\cent}\)

 

Example Question #491 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \(\displaystyle 6\) pennies and \(\displaystyle 3\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 21\cent\)

\(\displaystyle 22\cent\)

\(\displaystyle 23\cent\)

\(\displaystyle 20\cent\)

\(\displaystyle 24\cent\)

Correct answer:

\(\displaystyle 21\cent\)

Explanation:

Each penny is worth \(\displaystyle 1\cent\) and each nickel is worth \(\displaystyle 5\cent.\)

We have six pennies and three nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ 1\cent\\ \ 1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 6\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}6\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 21\cent}\)

Example Question #93 : How To Add

If I have \(\displaystyle 3\) nickels and \(\displaystyle 3\) dimes, how many cents do I have? 

Possible Answers:

\(\displaystyle 42\cent\)

\(\displaystyle 43\cent\)

\(\displaystyle 44\cent\)

\(\displaystyle 45\cent\)

\(\displaystyle 46\cent\)

Correct answer:

\(\displaystyle 45\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have three nickels and three dimes.

 \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ 10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}15\cent\\ +\ 30\cent\end{array}}{ \ \ \ \space 45\cent}\)

Example Question #491 : Operations

If I have \(\displaystyle 1\) quarter and \(\displaystyle 2\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 33\cent\)

\(\displaystyle 32\cent\)

\(\displaystyle 34\cent\)

\(\displaystyle 35\cent\)

\(\displaystyle 31\cent\)

Correct answer:

\(\displaystyle 35\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have one quarter and two nickels.

 \(\displaystyle 25\cent\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 35\cent}\)

Example Question #2361 : Operations

If I have \(\displaystyle 5\) dimes and \(\displaystyle 5\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 25\cent\)

\(\displaystyle 40\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 30\cent\)

\(\displaystyle 45\cent\)

Correct answer:

\(\displaystyle 55\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have five dimes and five pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ 1\cent\\ \ 1\cent\\+\ 1\cent\end{array}}{ \ \ \ \space 5\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 5\cent\end{array}}{ \ \ \space 55\cent}\)

Example Question #1522 : How To Add

If I have \(\displaystyle 3\) dimes and \(\displaystyle 8\) pennies, how many cents do I have?

Possible Answers:

\(\displaystyle 39\cent\)

\(\displaystyle 37\cent\)

\(\displaystyle 38\cent\)

\(\displaystyle 41\cent\)

\(\displaystyle 40\cent\)

Correct answer:

\(\displaystyle 38\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\)

We have three dimes and eight pennies. 

 \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\)  \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\1\cent\\1\cent\\1\cent\\1\cent\\1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 8\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}30\cent\\ +\ 8\cent\end{array}}{ \ \ \space 38\cent}\)

Example Question #1521 : How To Add

Select the answer with one triangle. 

Possible Answers:

Screen shot 2015 08 27 at 10.31.55 am

Screen shot 2015 08 27 at 10.32.03 am

Screen shot 2015 08 27 at 10.32.16 am

Correct answer:

Screen shot 2015 08 27 at 10.31.55 am

Explanation:

The number \(\displaystyle 1\) as a word is one. 

Screen shot 2015 08 27 at 10.31.55 am

Example Question #1522 : How To Add

What is the missing number? \(\displaystyle 10, 20,\) __________\(\displaystyle 40, 50\)

Possible Answers:

\(\displaystyle 21\)

\(\displaystyle 35\)

\(\displaystyle 30\)

\(\displaystyle 60\)

\(\displaystyle 25\)

Correct answer:

\(\displaystyle 30\)

Explanation:

In this series we are counting by \(\displaystyle 10\). When counting by \(\displaystyle 10\)\(\displaystyle 30\) is between \(\displaystyle 20\) and \(\displaystyle 40.\)

Example Question #24 : Generate And Analyze Patterns

Which sequence below follows the rule of adding \(\displaystyle 4?\)

Possible Answers:

\(\displaystyle 17,18,19\)

\(\displaystyle 4,9,14\)

\(\displaystyle 30,33,36\)

\(\displaystyle 4,6,8\)

\(\displaystyle 8,12,16\)

Correct answer:

\(\displaystyle 8,12,16\)

Explanation:

The only sequence from above that adds \(\displaystyle 4\) each time is \(\displaystyle 8,12,16\)

\(\displaystyle 8+4=12\)

\(\displaystyle 12+4=16\)

Example Question #8 : Add Fractions With Unlike Denominators

Solve:

\(\displaystyle \frac{2}{3}+\frac{1}2{}\)

Possible Answers:

\(\displaystyle \frac{3}{5}\)

\(\displaystyle \frac{5}{6}\)

\(\displaystyle \frac{6}{7}\)

\(\displaystyle 1\frac{1}{6}\)

\(\displaystyle \frac{7}{12}\)

Correct answer:

\(\displaystyle 1\frac{1}{6}\)

Explanation:

\(\displaystyle \frac{2}{3}+\frac{1}2{}\)

In order to solve this problem, we first have to find common denominators. 

\(\displaystyle \frac{2}{3}\times\frac{2}{2}=\frac{4}{6}\)

\(\displaystyle \frac{1}{2}\times\frac{}3{3}=\frac{3}{6}\)

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\(\displaystyle \frac{4}{6}+\frac{3}{6}=\frac{7}{6}\)

\(\displaystyle \frac{7}{6}=1\frac{1}{6}\) because \(\displaystyle 6\) can go into \(\displaystyle 7\) one time with \(\displaystyle \frac{1}{6}\) left over. 

Learning Tools by Varsity Tutors