All SSAT Upper Level Math Resources
Example Questions
Example Question #12 : How To Find Whether Lines Are Perpendicular
Which of the following choices gives the equations of a pair of perpendicular lines with the same -intercept?
and
and
and
and
and
and
All of the equations are given in slope-intercept form , so we can answer this question by examining the coefficients of , which are the slopes, and the constants, which are the -intercepts. In each case, since the lines are perpendicular, each -coefficient must be the other's opposite reciprocal, and since the lines have the same -intercept, the constants must be equal.
Of the five pairs, only
and
and
and
have equations whose -coefficients are the other's opposite reciprocal. Of these, only the latter pair of equations have equal constant terms.
and
is the correct choice.
Example Question #13 : How To Find Whether Lines Are Perpendicular
Given: the following three lines on the coordinate plane:
Line 1: The line of the equation
Line 2: The line of the equation
Line 3: The line of the equation
Which of the following is a true statement?
None of the other responses is correct.
No two of Line 1, Line 2, or Line 3 form a pair of perpendicular lines.
Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.
Line 2 and Line 3 are perpendicular; Line 1 is perpendicular to neither.
Line 1 and Line 2 are perpendicular; Line 3 is perpendicular to neither.
Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.
The slope of each line can be calculated by putting the equation in slope-intercept form and noting the coefficient of :
Line 1:
Slope of Line 1:
Line 2:
Slope of Line 2:
Line 3: The equation is already in slope-intercept form; its slope is 2.
Two lines are perpendicular if and only their slopes have product . The slopes of Lines 1 and 3 have product ; they are perpendicular. The slopes of Lines 1 and 2 have product ; they are not perpendicular. The slopes of Lines 2 and 3 have product ; they are not perpendicular.
Correct response: Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.
Example Question #325 : Pre Algebra
What is the perimeter of a right triangle with hypotenuse and a leg of length ?
It cannot be determined from the information given.
Using the Pythagorean Theorem, the length of the second leg can be determined.
We are given the length of the hypotenuse and one leg.
The perimeter of the triangle is the sum of the lengths of the sides.
Example Question #1 : How To Find The Perimeter Of A Right Triangle
Which of these polygons has the same perimeter as a right triangle with legs 6 feet and 8 feet?
A regular octagon with sidelength one yard.
None of the other responses is correct.
A regular pentagon with sidelength one yard.
A regular hexagon with sidelength one yard.
A regular decagon with sidelength one yard.
A regular octagon with sidelength one yard.
A right triangle with legs 6 feet and 8 feet has hypotentuse 10 feet, as this is a right triangle that confirms to the well-known Pythagorean triple 6-8-10. The perimeter is therefore feet, or 8 yards.
We are looking for a polygon with this perimeter. Each choice is a polygon with all sides one yard long, so we want the polygon with eight sides - the regular octagon is the correct choice.
Example Question #442 : Geometry
The lengths of the legs of a right triangle are units and units. What is the perimeter of this right triangle?
units
units
units
units
units
First, we need to use the Pythagorean Theorem to find the hypotenuse of the triangle.
Now, add up all three side lengths to find the perimeter of the triangle.
Example Question #442 : Geometry
A right triangle has leg lengths of and . Find the perimeter of this triangle.
First, use the Pythagorean Theorem to find the length of the hypotenuse.
Substituting in and for and (the lengths of the triangle's legs), we get:
Now, add up the three sides to find the perimeter:
Example Question #4 : How To Find The Perimeter Of A Right Triangle
What is the perimeter of a right triangle with legs of length and , respectively?
In order to find the perimeter of the right triangle, we need to first find the missing length of the hypotenuse. In order to find the hypotenuse, use the Pythagorean Theorem:
, where and are the lengths of the legs of the triangle, and is the length of the hypotenuse.
Substituting in our known values:
Now that we have the lengths of all sides of the right triangle, we can calculate the perimeter:
Example Question #5 : How To Find The Perimeter Of A Right Triangle
What is the perimeter of a right triangle with a hypotenuse of length and a leg of length ?
Not enough information provided
In order to find the perimeter of the right triangle, we need to first find the missing length of the second leg. In order to find the second leg, use the Pythagorean Theorem:
, where and are the lengths of the legs of the triangle, and is the length of the hypotenuse.
Substituting in our known values:
Subtracting from each side of the equation lets us isolate the variable for which we are solving:
Now that we have the lengths of all three sides of the right triangle, we can calculate the perimeter :
Example Question #6 : How To Find The Perimeter Of A Right Triangle
Find the perimeter of a right triangle with two legs of length and , respectively.
Not enough information provided
In order to find the perimeter of the right triangle, we need to first find the missing length of the hypotenuse. In order to find the length of the hypotenuse, use the Pythagorean Theorem:
, where and are the lengths of the legs of the triangle, and is the length of the hypotenuse.
Substituting in our known values:
Now that we have all three sides of the right triangle, we can calculate the perimeter:
Example Question #1 : Right Triangles
If a right triangle is similar to a right triangle, which of the other triangles must also be a similar triangle?
For the triangles to be similar, the dimensions of all sides must have the same ratio by dividing the 3-4-5 triangle.
The 6-8-10 triangle will have a scale factor of 2 since all dimensions are doubled the original 3-4-5 triangle.
The only correct answer that will yield similar ratios is the triangle with a scale factor of 4 from the 3-4-5 triangle.
The other answers will yield different ratios.
Certified Tutor