SSAT Upper Level Math : Geometry

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (-6, 2)\text{ and }(4,-4)

Possible Answers:

\displaystyle \frac{3}{5}

\displaystyle -5

\displaystyle -\frac{3}{5}

\displaystyle 5

Correct answer:

\displaystyle -\frac{3}{5}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{-4-2}{4-(-6)}=\frac{-6}{10}=-\frac{3}{5}

Example Question #5 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (1,1)\text{ and }(-8,6).

Possible Answers:

\displaystyle -\frac{5}{9}

\displaystyle \frac{9}{5}

\displaystyle \frac{5}{9}

\displaystyle -\frac{9}{5}

Correct answer:

\displaystyle -\frac{5}{9}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{6-1}{-8-1}=-\frac{5}{9}

Example Question #6 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (2, -3)\text{ and }(-3, -3)

Possible Answers:

\displaystyle \text{Undefined}

\displaystyle \frac{5}{6}

\displaystyle \frac{6}{5}

\displaystyle 0

Correct answer:

\displaystyle 0

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{-3-(-3)}{-3-2}=\frac{0}{-5}=0

Example Question #302 : Ssat Upper Level Quantitative (Math)

Find the slope of the line that passes through the points \displaystyle \left(\frac{1}{3}, -\frac{4}{5}\right) and \displaystyle \left ( -6,10\right ).

Possible Answers:

\displaystyle \frac{162}{95}

\displaystyle -\frac{95}{162}

\displaystyle \frac{95}{162}

\displaystyle -\frac{162}{95}

Correct answer:

\displaystyle -\frac{162}{95}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Plug in the given points to find the slope.

\displaystyle \text{Slope}=\frac{10-(-\frac{4}{5})}{-6-\frac{1}{3}}=\frac{\frac{54}{5}}{-\frac{19}{3}}=-\frac{162}{95}

Example Question #7 : How To Find Slope Of A Line

A line goes passes through the points \displaystyle \left(-\frac{1}{2}, 5\right)\text{ and }\left(\frac{3}{2}, -1\right). What is the slope of this line?

Possible Answers:

\displaystyle -\frac{1}{2}

\displaystyle 3

\displaystyle -3

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle -3

Explanation:

Use the following formula to find the slope of a line:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

The slope of this line would be

\displaystyle \frac{-1-5}{\frac{3}{2}-(-\frac{1}{2})}=\frac{-6}{2}=-3

Example Question #1 : Other Lines

What is the slope of line 3 = 8y - 4x?

Possible Answers:

2

0.5

-2

-0.5

Correct answer:

0.5

Explanation:

Solve equation for y. y=mx+b, where m is the slope

Example Question #1 : How To Find The Slope Of A Line

Find the slope of the line  6X – 2Y = 14

 

Possible Answers:

-6

-3

12

3

Correct answer:

3

Explanation:

Put the equation in slope-intercept form:

y = mx + b

-2y = -6x +14

y = 3x – 7

The slope of the line is represented by M; therefore the slope of the line is 3.

 

Example Question #2 : How To Find The Slope Of A Line

If 2x – 4y = 10, what is the slope of the line?

Possible Answers:

0.5

–0.5

–5/2

2

–2

Correct answer:

0.5

Explanation:

First put the equation into slope-intercept form, solving for y: 2x – 4y = 10 → –4y = –2x + 10 → y = 1/2*x – 5/2. So the slope is 1/2.

Example Question #1411 : Gre Quantitative Reasoning

What is the slope of the line with equation 4x – 16y = 24?

Possible Answers:

1/2

–1/4

1/4

–1/8

1/8

Correct answer:

1/4

Explanation:

The equation of a line is:

y = mx + b, where m is the slope

4x – 16y = 24

–16y = –4x + 24

y = (–4x)/(–16) + 24/(–16)

y = (1/4)x – 1.5

Slope = 1/4

Example Question #2 : Other Lines

What is the slope of a line which passes through coordinates \dpi{100} \small (3,7)\displaystyle \dpi{100} \small (3,7) and \dpi{100} \small (4,12)\displaystyle \dpi{100} \small (4,12)?

Possible Answers:

\dpi{100} \small 3\displaystyle \dpi{100} \small 3

\dpi{100} \small 5\displaystyle \dpi{100} \small 5

\dpi{100} \small \frac{1}{5}\displaystyle \dpi{100} \small \frac{1}{5}

\dpi{100} \small \frac{1}{2}\displaystyle \dpi{100} \small \frac{1}{2}

\dpi{100} \small 2\displaystyle \dpi{100} \small 2

Correct answer:

\dpi{100} \small 5\displaystyle \dpi{100} \small 5

Explanation:

Slope is found by dividing the difference in the \dpi{100} \small y\displaystyle \dpi{100} \small y-coordinates by the difference in the \dpi{100} \small x\displaystyle \dpi{100} \small x-coordinates.

\dpi{100} \small \frac{(12-7)}{(4-3)}=\frac{5}{1}=5\displaystyle \dpi{100} \small \frac{(12-7)}{(4-3)}=\frac{5}{1}=5

Learning Tools by Varsity Tutors