SSAT Upper Level Math : Rational Numbers

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Ordering Fractions

Order the following fractions from least to greatest:

\displaystyle \frac{2}{9}, \frac{1}{3}, \frac{1}{18}, \frac{1}{6}

Possible Answers:

\displaystyle \frac{1}{6}, \frac{1}{18}, \frac{1}{3}, \frac{2}{9}

\displaystyle \frac{1}{18}, \frac{1}{6}, \frac{2}{9}, \frac{1}{3}

\displaystyle \frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \frac{1}{18}

\displaystyle \frac{1}{3}, \frac{1}{6}, \frac{2}{9}, \frac{1}{18}

Correct answer:

\displaystyle \frac{1}{18}, \frac{1}{6}, \frac{2}{9}, \frac{1}{3}

Explanation:

Convert the fractions so that they share the same denominator. Then, compare their numerators to put them in order from least to greatest.

\displaystyle \frac{1}{18}\cdot \frac{2}{2}=\frac{2}{36}

\displaystyle \frac{1}{6}\cdot \frac{6}{6}=\frac{6}{36}

\displaystyle \frac{2}{9}\cdot \frac{4}{4}=\frac{8}{36}

\displaystyle \frac{1}{3}\cdot \frac{12}{12}=\frac{12}{36}

 

\displaystyle \frac{1}{18}, \frac{1}{6}, \frac{2}{9}, \frac{1}{3} is in order from least to greatest.

Example Question #10 : How To Order Fractions From Least To Greatest Or From Greatest To Least

Order the following fractions from greatest to least:

\displaystyle \frac{9}{10}, \frac{1}{5}, \frac{18}{25}, \frac{7}{20}

Possible Answers:

\displaystyle \frac{9}{10}, \frac{18}{25}, \frac{7}{20}, \frac{1}{5}

\displaystyle \frac{1}{5}, \frac{7}{20}, \frac{8}{25}, \frac{9}{10}

\displaystyle \frac{18}{25}, \frac{9}{10}, \frac{7}{20}, \frac{1}{5}

\displaystyle \frac{9}{10}, \frac{7}{20}, \frac{18}{25}, \frac{1}{5}

Correct answer:

\displaystyle \frac{9}{10}, \frac{18}{25}, \frac{7}{20}, \frac{1}{5}

Explanation:

Convert the fractions so that they all share the same denominator. Then, compare their numerators to put them in order from greatest to least.

\displaystyle \frac{9}{10}\cdot \frac{10}{10}=\frac{90}{100}

\displaystyle \frac{18}{25}\cdot \frac{4}{4}=\frac{72}{100}

\displaystyle \frac{7}{20}\cdot \frac{5}{5}=\frac{35}{100}

\displaystyle \frac{1}{5}\cdot \frac{20}{20}=\frac{20}{100}

 

\displaystyle \frac{9}{10}, \frac{18}{25}, \frac{7}{20}, \frac{1}{5} is in order from greatest to least.

 

Example Question #321 : Fractions

Order the following fractions from least to greatest:

\displaystyle \frac{1}{8}, \frac{8}{9}, \frac{1}{6}, \frac{35}{26}

Possible Answers:

\displaystyle \frac{1}{8}, \frac{8}{9}, \frac{1}{6}, \frac{35}{36}

\displaystyle \frac{1}{8}, \frac{35}{36}, \frac{8}{9}, \frac{1}{6}

\displaystyle \frac{35}{36}, \frac{8}{9}, \frac{1}{6}, \frac{1}{8}

\displaystyle \frac{1}{8}, \frac{1}{6}, \frac{8}{9}, \frac{35}{36}

Correct answer:

\displaystyle \frac{1}{8}, \frac{1}{6}, \frac{8}{9}, \frac{35}{36}

Explanation:

Convert the fractions so that they same the same denominator. Then, compare the numerators of the fractions to put them in order from least to greatest.

\displaystyle \frac{1}{8}\cdot \frac{9}{9}=\frac{9}{72}

\displaystyle \frac{1}{6}\cdot \frac{12}{12}=\frac{12}{72}

\displaystyle \frac{8}{9}\cdot \frac{8}{8}=\frac{64}{72}

\displaystyle \frac{35}{36}\cdot \frac{2}{2}=\frac{70}{72}

\displaystyle \frac{1}{8}, \frac{1}{6}, \frac{8}{9}, \frac{35}{36} is in order from least to greatest.

Example Question #382 : Number Concepts And Operations

Order the following fractions from greatest to least:

\displaystyle \frac{3}{4}, \frac{7}{8}, \frac{3}{20}, \frac{13}{20}

Possible Answers:

\displaystyle \frac{3}{4}, \frac{7}{8}, \frac{13}{20}, \frac{3}{20}

\displaystyle \frac{3}{20}, \frac{3}{4}, \frac{7}{8}, \frac{13}{20}

\displaystyle \frac{13}{20}, \frac{3}{20}, \frac{7}{8}, \frac{3}{4}

\displaystyle \frac{7}{8}, \frac{3}{4}, \frac{13}{20}, \frac{3}{20}

Correct answer:

\displaystyle \frac{7}{8}, \frac{3}{4}, \frac{13}{20}, \frac{3}{20}

Explanation:

Convert the fractions so that they share the same denominator. Then, compare their numerators in order to put them from greatest to least.

\displaystyle \frac{7}{8}\cdot \frac{10}{10}=\frac{70}{80}

\displaystyle \frac{3}{4}\cdot \frac{20}{20}=\frac{60}{80}

\displaystyle \frac{13}{20}\cdot \frac{4}{4}=\frac{52}{80}

\displaystyle \frac{3}{20}\cdot \frac{4}{4}=\frac{12}{80}

 

\displaystyle \frac{7}{8}, \frac{3}{4}, \frac{13}{20}, \frac{3}{20} is in order from greatest to least.

Example Question #11 : How To Order Fractions From Least To Greatest Or From Greatest To Least

Order the following fractions from greatest to least:

\displaystyle \frac{3}{10}, \frac{1}{5}, \frac{1}{25}, \frac{13}{25}

Possible Answers:

\displaystyle \frac{13}{25}, \frac{3}{10}, \frac{1}{5}, \frac{1}{25}

\displaystyle \frac{13}{25}, \frac{1}{25}, \frac{3}{10}, \frac{1}{5}

\displaystyle \frac{13}{25}, \frac{3}{10}, \frac{1}{25}, \frac{1}{5}

\displaystyle \frac{1}{5}, \frac{3}{10}, \frac{1}{25}, \frac{13}{25}

Correct answer:

\displaystyle \frac{13}{25}, \frac{3}{10}, \frac{1}{5}, \frac{1}{25}

Explanation:

Convert the fractions so that they share the same denominator. Then, compare their numerators to order them from greatest to least.

\displaystyle \frac{13}{25}\cdot \frac{2}{2}=\frac{26}{50}

\displaystyle \frac{3}{10}\cdot \frac{5}{5}=\frac{15}{50}

\displaystyle \frac{1}{5}\cdot \frac{10}{10}=\frac{10}{50}

\displaystyle \frac{1}{25}\cdot \frac{2}{2}=\frac{2}{50}

 

\displaystyle \frac{13}{25}, \frac{3}{10}, \frac{1}{5}, \frac{1}{25} is in order from greatest to least.

Example Question #11 : How To Order Fractions From Least To Greatest Or From Greatest To Least

Order the following fractions from greatest to least:

\displaystyle \frac{3}{4}, \frac{1}{12}, \frac{5}{24}, \frac{5}{6}

Possible Answers:

\displaystyle \frac{5}{6}, \frac{5}{24}, \frac{3}{4}, \frac{1}{12}

\displaystyle \frac{5}{12}, \frac{5}{6}, \frac{3}{4}, \frac{1}{12}

\displaystyle \frac{5}{6}, \frac{3}{4}, \frac{5}{24}, \frac{1}{12}

\displaystyle \frac{5}{6}, \frac{1}{12}, \frac{5}{24}, \frac{3}{4}

Correct answer:

\displaystyle \frac{5}{6}, \frac{3}{4}, \frac{5}{24}, \frac{1}{12}

Explanation:

Convert the fractions so that they share the same denominator. Then, compare their numerators in order to put them from greatest to least.

\displaystyle \frac{5}{6}\cdot \frac{4}{4}=\frac{20}{24}

\displaystyle \frac{3}{4}\cdot \frac{6}{6}=\frac{18}{24}

\displaystyle \frac{5}{24} stays the same.

\displaystyle \frac{1}{12}\cdot \frac{2}{2}=\frac{2}{24}

 

\displaystyle \frac{5}{6}, \frac{3}{4}, \frac{5}{24}, \frac{1}{12} is in order from greatest to least.

Example Question #11 : How To Order Fractions From Least To Greatest Or From Greatest To Least

Order the following fractions from greatest to least:

\displaystyle \frac{3}{5}, \frac{3}{10}, \frac{1}{6}, \frac{2}{3}

Possible Answers:

\displaystyle \frac{3}{10}, \frac{1}{6}, \frac{3}{5}, \frac{2}{3}

\displaystyle \frac{3}{5}, \frac{2}{3}, \frac{3}{10}, \frac{1}{6}

\displaystyle \frac{2}{3}, \frac{3}{5}, \frac{3}{10}, \frac{1}{6}

\displaystyle \frac{3}{10}, \frac{3}{5}, \frac{2}{3}, \frac{1}{6}

Correct answer:

\displaystyle \frac{2}{3}, \frac{3}{5}, \frac{3}{10}, \frac{1}{6}

Explanation:

Convert the fractions so that they share the same denominator. Then, compare their numerators to put them in order from greatest to least.

\displaystyle \frac{2}{3}\cdot \frac{10}{10}=\frac{20}{30}

\displaystyle \frac{3}{5}\cdot \frac{6}{6}=\frac{18}{30}

\displaystyle \frac{3}{10}\cdot \frac{3}{3}=\frac{9}{30}

\displaystyle \frac{1}{6}\cdot \frac{5}{5}=\frac{5}{30}

 

\displaystyle \frac{2}{3}, \frac{3}{5}, \frac{3}{10}, \frac{1}{6} is in order from greatest to least.

Example Question #381 : Number Concepts And Operations

Order the following fractions from least to greatest:  \displaystyle \left(\frac{2}{3}. \frac{6}{11},\frac{4}{7}\right)

Possible Answers:

\displaystyle \left(\frac{4}{7},\frac{2}{3},\frac{6}{11} \right)

\displaystyle \left( \frac{4}{7},\frac{6}{11},\frac{2}{3}\right )

\displaystyle \left( \frac{6}{11},\frac{2}{3},\frac{4}{7}\right )

\displaystyle \left( \frac{6}{11},\frac{4}{7},\frac{2}{3}\right )

\displaystyle \textup{The set is already in correct order.}

Correct answer:

\displaystyle \left( \frac{6}{11},\frac{4}{7},\frac{2}{3}\right )

Explanation:

To determine the correct order from least to greatest, convert all three fractions to a common denominator.

The least common denominator, LCD, can be determined by multiplying the three denominators together. 

\displaystyle 3\times11\times7 = 231

Convert the set by multiplying to the numerator by what was multiplied to the denominator to achieve the LCD.

\displaystyle \left(\frac{2}{3}. \frac{6}{11},\frac{4}{7} \right )= \left( \frac{154}{231},\frac{126}{231},\frac{132}{231}\right )

Reorder the set.  The correct order from least to greatest is:

\displaystyle \left( \frac{126}{231},\frac{132}{231},\frac{154}{231}\right ) =\left( \frac{6}{11},\frac{4}{7},\frac{2}{3}\right )

Example Question #1 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{1}{8}

Possible Answers:

\displaystyle =

\displaystyle <

\displaystyle >

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{4}{4}=\frac{4}{8}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{4}{8}>\frac{1}{8}

Example Question #2 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{3}{4} __________\displaystyle \frac{7}{8}

Possible Answers:

\displaystyle =

\displaystyle <

\displaystyle >

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{3}{4}\times\frac{2}{2}=\frac{6}{8}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{6}{8}< \frac{7}{8}

Learning Tools by Varsity Tutors