SSAT Upper Level Math : SSAT Upper Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Volume Of A Three Dimensional Figure

Give the volume of a cube with surface area 3 square meters.

Possible Answers:

\(\displaystyle 250,000\sqrt{2} \textup{ cm}^{3}\)

\(\displaystyle 250,000 \textup{ cm}^{3}\)

\(\displaystyle 125,000 \textup{ cm}^{3}\)

\(\displaystyle 125,000\sqrt{2} \textup{ cm}^{3}\)

\(\displaystyle 125,000\sqrt{3} \textup{ cm}^{3}\)

Correct answer:

\(\displaystyle 250,000\sqrt{2} \textup{ cm}^{3}\)

Explanation:

Let \(\displaystyle s\) be the length of one edge of the cube. Since its surface area is 3 square meters, one face has one-sixth of this area, or \(\displaystyle \frac{3}{6} = \frac{1}{2}\) square meters. Therefore, \(\displaystyle s^{2} = \frac{1}{2}\), and \(\displaystyle s = \sqrt{ \frac{1}{2}} = \frac{\sqrt{1}}{\sqrt{2}}=\frac{1 \cdot \sqrt{2}}{\sqrt{2}\cdot \sqrt{2}}= \frac{\sqrt{2}}{2}\) meters.

The choices are in centimeters, so multiply this by 100 - the sidelength is

\(\displaystyle \frac{\sqrt{2}}{2} \cdot 100 = 50 \sqrt{2}\) centimeters.

The volume is the cube of this, or \(\displaystyle V= \left ( 50 \sqrt{2} \right )^{3}= 50^{3} \cdot \left ( \sqrt{2} \right )^{3}= 125,000 \cdot 2 \sqrt{2}= 250,000\sqrt{2}\) cubic centimeters.

Example Question #7 : How To Find The Volume Of A Cube

The length of a diagonal of a cube is \(\displaystyle 15\sqrt{2}\). Give the volume of the cube.

Possible Answers:

\(\displaystyle 750 \sqrt{2}\)

\(\displaystyle 750 \sqrt{6}\)

\(\displaystyle 1,500 \sqrt{2}\)

\(\displaystyle 750 \sqrt{3}\)

\(\displaystyle 1,500 \sqrt{3}\)

Correct answer:

\(\displaystyle 750 \sqrt{6}\)

Explanation:

Let \(\displaystyle s\) be the length of one edge of the cube. By the three-dimensional extension of the Pythagorean Theorem, 

\(\displaystyle s^{2}+s^{2}+s^{2}= (15 \sqrt{2})^{2}\)

\(\displaystyle 3s^{2}=15 ^{2}\cdot \left ( \sqrt{2} \right )^{2}\)

\(\displaystyle 3s^{2}=225 \cdot 2 = 450\)

\(\displaystyle s^{2} = 150\)

\(\displaystyle s = \sqrt{150 } = \sqrt{25} \cdot \sqrt{6} = 5\sqrt{6}\)

Cube the sidelength to get the volume:

\(\displaystyle s ^{3 }= \left ( 5\sqrt{6} \right )^{3 }\)

\(\displaystyle s ^{3 }= 5^{3 } \left (\sqrt{6} \right )^{3 } = 125 \cdot 6 \sqrt{6} = 750 \sqrt{6}\)

Example Question #1 : How To Find The Volume Of A Cube

The length of a diagonal of one face of a cube is \(\displaystyle 16\sqrt{2}\). Give the volume of the cube.

Possible Answers:

\(\displaystyle 4,096\)

\(\displaystyle 32,768\)

\(\displaystyle 8,192\sqrt{2}\)

\(\displaystyle 65,536\sqrt{2}\)

The correct answer is not among the other responses.

Correct answer:

\(\displaystyle 4,096\)

Explanation:

A diagonal of a square has length \(\displaystyle \sqrt{2}\) times that of a side, so each side of each square face of the cube has length \(\displaystyle 16 \sqrt{2} \div \sqrt{2}= 16\). Cube this to get the volume:

\(\displaystyle 16^{3} = 4,096\)

Example Question #11 : How To Find The Volume Of A Cube

The distance from one vertex of a cube to its opposite vertex is one foot. Give the volume of the cube in inches.

Possible Answers:

\(\displaystyle 64 \sqrt{3} \textup{ in}^{3}\)

\(\displaystyle 192 \sqrt{3} \textup{ in}^{3}\)

\(\displaystyle 216 \textup{ in}^{3}\)

\(\displaystyle 266 \sqrt{2} \textup{ in}^{3}\)

\(\displaystyle 288 \textup{ in}^{3}\)

Correct answer:

\(\displaystyle 192 \sqrt{3} \textup{ in}^{3}\)

Explanation:

Since we are looking at inches, we will look at one foot as twelve inches.

Let \(\displaystyle s\) be the length of one edge of the cube. By the three-dimensional extension of the Pythagorean Theorem, 

\(\displaystyle s^{2}+s^{2}+s^{2}=12^{2}\)

\(\displaystyle 3s^{2}=144\)

\(\displaystyle s^{2}=48\)

\(\displaystyle s= \sqrt{48} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}\) inches.

Cube this sidelength to get the volume:

\(\displaystyle s^{3}= \left ( 4\sqrt{3} \right )^{3} = 4^{3} \cdot \left ( \sqrt{3} \right ) ^{3} = 64 \cdot 3 \sqrt{3}= 192 \sqrt{3}\) cubic inches.

Example Question #12 : How To Find The Volume Of A Cube

The distance from one vertex of a perfectly cubic aquarium to its opposite vertex is \(\displaystyle 4.5\) meters. Give the volume of the aquarium in liters.

\(\displaystyle 1\) cubic meter = \(\displaystyle 1,000\) liters.

Possible Answers:

\(\displaystyle 6,750 \sqrt{2} \textup{ L}\)

\(\displaystyle 10,125\sqrt{3}\textup{ L}\)

\(\displaystyle 6,750 \textup{ L}\)

\(\displaystyle 10,125 \textup{ L}\)

\(\displaystyle 91,125 \textrm{ L}\)

Correct answer:

\(\displaystyle 10,125\sqrt{3}\textup{ L}\)

Explanation:

Let \(\displaystyle s\) be the length of one edge of the cube. By the three-dimensional extension of the Pythagorean Theorem, 

\(\displaystyle s^{2}+s^{2}+s^{2}=4.5^{2}\)

\(\displaystyle 3s^{2}=20.25\)

\(\displaystyle s^{2} =6.75 = \frac{27}{4}\)

\(\displaystyle s = \sqrt{\frac{27}{4}} = \frac{\sqrt{27}}{\sqrt{4}}} = \frac{ \sqrt{9} \cdot \sqrt{3}}{2}= \frac{3\sqrt{3}}{2}\) meters.

Cube this sidelength to get the volume:

\(\displaystyle s ^{3 } =\left ( \frac{3\sqrt{3}}{2} \right )^{3 }= \frac{3^{3 } \left (\sqrt{3}\right )^{3 }}{2^{3 } } = \frac{ 27 \cdot 3\sqrt{3} }{8 } = \frac{ 81 \sqrt{3} }{8 }\) cubic meters.

To convert this to liters, multiply by 1,000:

\(\displaystyle \frac{ 81\sqrt{3} }{8 } \cdot 1,000 = \frac{81\sqrt{3} }{8 } \cdot \frac{1,000}{1} = \frac{ 81\sqrt{3} }{1 } \cdot \frac{125}{1}= 10,125\sqrt{3}\) liters.

Example Question #861 : Ssat Upper Level Quantitative (Math)

Find the volume of a cube with a side length of \(\displaystyle 20\).

Possible Answers:

\(\displaystyle 8\textup{,}000\)

\(\displaystyle 6\textup{,}000\)

\(\displaystyle 400\)

\(\displaystyle 800\)

\(\displaystyle 4\textup{,}000\)

Correct answer:

\(\displaystyle 8\textup{,}000\)

Explanation:

Write the formula for the volume of a cube.

\(\displaystyle V=a^3=(20)^3=8\textup{,}000\)

The correct answer is \(\displaystyle 8\textup{,}000\).

Example Question #862 : Ssat Upper Level Quantitative (Math)

Find the volume of a square pyramid that has a height of \(\displaystyle 9\) and a side length of \(\displaystyle 4\).

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 60\)

\(\displaystyle 54\)

\(\displaystyle 42\)

Correct answer:

\(\displaystyle 48\)

Explanation:

The formula to find the volume of a square pyramid is

\(\displaystyle \text{Volume}=(side)^2\frac{height}{3}\)

So plugging in the information given from the question,

\(\displaystyle \text{Volume}=4^2\frac{9}{3}=16\times3=48\)

Example Question #863 : Ssat Upper Level Quantitative (Math)

Find the volume of a square pyramid with a height of \(\displaystyle 12\) and a length of a side of its square base of \(\displaystyle 3\).

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle 36\)

\(\displaystyle 60\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 36\)

Explanation:

The formula to find the volume of a square pyramid is

\(\displaystyle \text{Volume}=(side)^2\frac{height}{3}\)

So plugging in the information given from the question,

\(\displaystyle \text{Volume}=(3^2)\frac{12}{3}=9\times 4=36\)

Example Question #864 : Ssat Upper Level Quantitative (Math)

Find the volume of a regular hexagonal prism that has a height of \(\displaystyle 10\). The side length of the hexagon base is \(\displaystyle 12\).

Possible Answers:

\(\displaystyle 4320\sqrt3\)

\(\displaystyle 2160\sqrt3\)

\(\displaystyle 1440\sqrt3\)

\(\displaystyle 660\sqrt3\)

Correct answer:

\(\displaystyle 2160\sqrt3\)

Explanation:

The formula to find the volume of a hexagonal prism is 

\(\displaystyle \text{Volume}=\frac{3\sqrt3}{2}(side)^2(height)\)

Plugging in the values given by the question will give

\(\displaystyle \text{Volume}=\frac{3\sqrt3}{2}(12^2)(10)=2160\sqrt3\)

Example Question #25 : Volume Of A Three Dimensional Figure

In terms of \(\displaystyle x\), find the volume of a regular hexagonal prism that has a height of \(\displaystyle 5\). The hexagon base has side lengths of \(\displaystyle 4x\).

Possible Answers:

\(\displaystyle 240x\sqrt3\)

\(\displaystyle 120x\sqrt3\)

\(\displaystyle 120x^2\sqrt3\)

\(\displaystyle 360x^2\sqrt3\)

Correct answer:

\(\displaystyle 120x^2\sqrt3\)

Explanation:

The formula to find the volume of a hexagonal prism is 

\(\displaystyle \text{Volume}=\frac{3\sqrt3}{2}(side)^2(height)\)

Plugging in the values given by the question will give

\(\displaystyle \text{Volume}=\frac{3\sqrt3}{2}(4x)^2(5)=120x^2\sqrt3\)

Learning Tools by Varsity Tutors