ACT Math : ACT Math

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Graph An Exponential Function

Give the -intercept of the graph of the function

Round to the nearest tenth, if applicable.

Possible Answers:

The graph has no -interceptx

Correct answer:

Explanation:

The -intercept is , where :

The -intercept is .

Example Question #72 : Graphing

Give the -intercept of the graph of the function

Round to the nearest hundredth, if applicable.

Possible Answers:

The graph has no -intercept

Correct answer:

Explanation:

The -intercept is :

 is the -intercept.

Example Question #2 : How To Graph An Exponential Function

Give the vertical asymptote of the graph of the function 

Possible Answers:

The graph of  has no vertical asymptote.

Correct answer:

The graph of  has no vertical asymptote.

Explanation:

Since 4 can be raised to the power of any real number, the domain of  is the set of all real numbers. Therefore, there is no vertical asymptote of the graph of .

Example Question #74 : Graphing

Give the horizontal asymptote of the graph of the function 

Possible Answers:

The graph has no horizontal asymptote.

Correct answer:

Explanation:

We can rewrite this as follows:

This is a translation of the graph of , which has  as its horizontal asymptote, to the right two units and down three units. Because of the latter translation, the horizontal asymptote is .

Example Question #1 : How To Graph An Exponential Function

If the functions 

were graphed on the same coordinate axes, what would be the -coordinate of their point of intersection?

Round to the nearest tenth, if applicable.

Possible Answers:

The graphs of  and  would not intersect.

Correct answer:

Explanation:

We can rewrite the statements using  for both  and  as follows:

To solve this, we can multiply the first equation by , then add:

      

            

Example Question #2 : How To Graph An Exponential Function

If the functions 

were graphed on the same coordinate axes, what would be the -coordinate of their point of intersection?

Round to the nearest tenth, if applicable.

Possible Answers:

The graphs of  and  would not intersect.

Correct answer:

Explanation:

We can rewrite the statements using  for both  and  as follows:

To solve this, we can set the expressions equal, as follows:

Example Question #5 : Transformation

If this is a sine graph, what is the phase displacement?Screen_shot_2013-07-16_at_10.04.45_am

Possible Answers:

0

π

4π

(1/2)π

2π

Correct answer:

0

Explanation:

The phase displacement is the shift from the center of the graph. Since this is a sine graph and the sin(0) = 0, this is in phase.

Example Question #1 : Transformations

If this is a cosine graph, what is the phase displacement?Screen_shot_2013-07-16_at_10.04.45_am

Possible Answers:

2π

(1/2)π

0

π

4π

Correct answer:

π

Explanation:

The phase displacement is the shift of the graph. Since cos(0) = 1, the phase shift is π because the graph is at its high point then.

Example Question #2 : How To Find Transformation For An Analytic Geometry Equation

A regular pentagon is graphed in the standard (x,y) coordinate plane. Which of the following are the coordinates for the vertex P?

Screen_shot_2013-06-03_at_1.02.45_pm

Possible Answers:

Correct answer:

Explanation:

Regular pentagons have lines of symmetry through each vertex and the center of the opposite side, meaning the y-axis forms a line of symmetry in this instance. Therefore, point P is negative b units in the x-direction, and c units in the y-direction. It is a reflection of point (b,c) across the y-axis.

Example Question #3 : How To Find Transformation For An Analytic Geometry Equation

If g(x) is a transformation of f(x) that moves the graph of f(x) four units up and three units left, what is g(x) in relation to f(x)?

Possible Answers:

Correct answer:

Explanation:

To solve this question, you must have an understanding of standard transformations. To move a function along the x-axis in the positive direction, you must subtract the value from the operative x-value. For example, to move a function, f(x), five units to the left would be f(x+5).

To shift a function along the y-axis in the positive direction, you must add the value to the overall function. For example, to move a function, f(x), three units up would be f(x)+3.

The question asks us to move the function, f(x), left three units and up four units. f(x+3) will move the function three units to the left and f(x)+4 will move it four units up.

Together, this gives our final answer of f(x+3)+4.

Learning Tools by Varsity Tutors